Applications of Group Cohomology to 3-Manifolds

Richard Wong

Junior Topology Spring 2020

Slides can be found at
http://www.ma.utexas.edu/users/richard.wong/
Let G be a topological group.

Is it possible to construct a space X such that $\pi_1(X) \cong G$?

If G is discrete, then yes! We can use covering space theory.

We need a simply connected space Y such that G acts freely on Y. Then $Y \xrightarrow{p} X = Y/G$ is a universal covering space, and we have

$$G \cong \pi_1(X)/p_*(\pi_1(Y)) \cong \pi_1(X)$$

We can do even better: For discrete G, we can build a space $K(G, 1)$ such that $\pi_n(K(G, 1)) \cong \begin{cases} G & n = 1 \\ 0 & \text{else} \end{cases}$

We just need a contractible space Y such that G acts freely on Y.

Richard Wong

University of Texas at Austin

Applications of Group Cohomology to 3-Manifolds
How does this generalize to arbitrary topological groups? One can construct BG, the *classifying space* of G. Unfortunately, this is no longer a $K(G, 1)$.

Construction

One construction is the Milnor construction, which constructs EG, a contractible CW complex such that G acts freely.

$$EG = \text{colim}_i G^i$$

Then $BG = EG/G$, the quotient space of the G-action.

One can think of this as generalization of covering space theory.
Example

\[E\mathbb{Z} = \mathbb{R}, \quad B\mathbb{Z} \cong S^1 \]

Example

\[E\mathbb{Z}/2 = S^\infty, \quad B\mathbb{Z}/2 \cong \mathbb{R}P^\infty \]

Example

If \(G \) is a discrete group, then \(BG \cong K(G, 1) \).

Example

\[BS^1 \cong \mathbb{C}P^\infty \]

Example

\[B(G \times H) \cong BG \times BH \]
BG is a nice object to study. It is called the classifying space since

\[[X, BG] = \{ \text{Isomorphism classes of principal } G\text{-bundles over } X \} \]

Definition

Recall that a principal \(G \)-bundle over \(X \) is a fiber bundle \(\pi : P \to X \) with fiber \(G \), where \(G \) acts on itself by (left) translations.

In particular, \(G \) acts freely on \(P \), and we always have a fibration \(P \to X \to BG \).

Example

\(EG \to BG \) is the universal principal bundle.
Definition

The group cohomology of \(G \) is defined to be the cohomology of \(BG \):

\[
H^\ast(G; \mathbb{Z}) := H^\ast(BG; \mathbb{Z})
\]

More generally, given a \(\mathbb{Z} \)-module \(M \), one can define

Definition

The group cohomology of \(G \) with coefficients in \(M \) is defined to be the cohomology of \(BG \):

\[
H^\ast(G; M) := H^\ast(BG; M)
\]
Example

\[H^i(\mathbb{Z}/2; \mathbb{Z}) := H^i(\mathbb{R}P^\infty; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & i = 0 \\ 0 & i \text{ odd} \geq 1 \\ \mathbb{Z}/2 & i \text{ even} \geq 2 \end{cases} \]

Example

\[H^i(\mathbb{Z}/2; \mathbb{F}_2) := H^i(\mathbb{R}P^\infty; \mathbb{F}_2) \cong \mathbb{F}_2[x], \text{ with } |x| = 1 \]
What if G acts (linearly) on M in an interesting way?

One answer: Group cohomology with local coefficients. This takes into account the action of $\pi_1(BG) = G$ on M.

A \mathbb{Z}-module with G-action is the same as a $\mathbb{Z}G$-module. So when considering the category of modules with G action, one can instead consider the category of $\mathbb{Z}G$-modules.

For example, one defines the cohomology of BG with local coefficients M to be

$$H^*(G; M) := H^*(\text{Hom}_{\mathbb{Z}G}(C_n(EG), M))$$
What if G acts (linearly) on M in an interesting way?

Another answer: Homological algebra:

Since EG is contractible, and G acts freely on EG, then we have that $C_*(EG)$ is a **free resolution** of \mathbb{Z} over $\mathbb{Z}G$.

Therefore, we have that

$$H^*(G; M) \cong \text{Ext}^*_{\mathbb{Z}G}(\mathbb{Z}, M)$$

This gives us a purely algebraic way of understanding group cohomology.
\(G = \mathbb{Z}/n, \mathbb{Z} \) and \(\mathbb{F}_p \) with trivial action.

Example

\[
\cdots \xrightarrow{\cdot (\Sigma g^i)} \mathbb{Z} G \xrightarrow{\cdot (g-1)} \mathbb{Z} G \xrightarrow{\cdot (\Sigma g^i)} \mathbb{Z} G \xrightarrow{\cdot (g-1)} \mathbb{Z} G \xrightarrow{\epsilon} \mathbb{Z}
\]

\(H^i(\mathbb{Z}/n; \mathbb{Z}) \cong \begin{cases}
\mathbb{Z} & i = 0 \\
0 & i \text{ odd } \geq 1 \\
\mathbb{Z}/n & i \text{ even } \geq 2
\end{cases} \)

Example

\[
\cdots \xrightarrow{\cdot (\Sigma g^i)} \mathbb{F}_p G \xrightarrow{\cdot (g-1)} \mathbb{F}_p G \xrightarrow{\cdot (\Sigma g^i)} \mathbb{F}_p G \xrightarrow{\cdot (g-1)} \mathbb{F}_p G \xrightarrow{\epsilon} \mathbb{F}_p
\]

\(H^*(\mathbb{Z}/p; \mathbb{F}_p) \cong \mathbb{F}_p[x] \otimes \Lambda(y), \text{ with } |x| = 2 \text{ and } |y| = 1 \)

Richard Wong

Applications of Group Cohomology to 3-Manifolds
Theorem (Künneth Formula)

Let X and Y be topological spaces and F be a field. Then for each integer k we have a natural isomorphism

$$\bigoplus_{i+j=k} H^i(X; F) \otimes H^j(Y; F)) \rightarrow H^k(X \times Y; F)$$

Example

If k is a field of characteristic p, and $G = (\mathbb{Z}/p)^n$, then

$$H^*(G, k) = \begin{cases} \mathbb{F}_p[x_1, \ldots, x_n] & |x_i| = 1, \; p = 2 \\ \mathbb{F}_p[x_1, \ldots, x_n] \otimes \Lambda(y_1, \ldots, y_n) & |x_i| = 2, |y_i| = 1, \; p \neq 2 \end{cases}$$
Definition

Given a fibration $F \to X \to B$, we have the Serre spectral sequence:

$$E_2^{p,q} = H^q(B; H^p(F)) \Rightarrow H^{p+q}(X)$$

This spectral sequence is a computational tool whose inputs are $H^*(B)$ and $H^*(F)$. If we can also figure out some additional information (the differentials), then we can compute $H^*(X)$.
Example

A SES of groups $1 \to N \to G \to G/N \to 1$ yields a fibration $BN \to BG \to B(G/N)$. Given a G-module M, the associated spectral sequence is the Lyndon-Hochschild-Serre spectral sequence:

$$E_2^{p,q} = H^q(G/N; H^p(N; M)) \Rightarrow H^{p+q}(G; M)$$
From now on, let G be a finite group.

When does G act freely on S^n?
Proposition

If \(n \) is even, then the only non-trivial finite group that can act freely on \(S^n \) is \(\mathbb{Z}/2 \).

Proof.

We have a group homomorphism \(\deg : G \to \mathbb{Z}/2 \) by taking the degree of the map \(S^n \xrightarrow{\cdot g} S^n \).

Since \(G \) acts freely, \(\cdot g \) is a fixed point free map for nontrivial \(g \). Therefore, by the hairy ball theorem, \(\cdot g \) is homotopic to the antipodal map.

Hence for nontrivial \(g \in G \), we have \(\deg(g) = -1 \). Hence \(\deg : G \to \mathbb{Z}/2 \) is injective. \qed
Warm up: Finite Groups acting freely on S^1:

Proposition

\mathbb{Z}/n is the only finite group that acts freely on S^1.

Proof.

If G is a finite group acting freely on S^1, then we have a fiber bundle

$$G \to S^1 \xrightarrow{p} S^1/G$$

However, we know that $S^1/G \cong S^1$. We then have by covering space theory that

$$G \cong \pi_1(S^1/G)/p_*(\pi_1(S^1)) \cong \mathbb{Z}/p_*(\mathbb{Z})$$
Let $n > 1$. If G acts freely on S^n, then it again a covering space action, and so we again obtain a fiber bundle

$$G \to S^n \xrightarrow{p} S^n/G$$

S^n/G is a closed manifold. Moreover, note that since $\pi_1(S^n) \cong 0$, we have by covering space theory

$$G \cong \pi_1(S^n/G)$$

How does group cohomology come into the picture?

Definition

A finite group G is **periodic** of period $k > 0$ if

$$H^i(G; \mathbb{Z}) \cong H^{i+k}(G; \mathbb{Z})$$

for all $i \geq 1$, where \mathbb{Z} has trivial G action.
Proposition

If G acts freely on S^n, then G is periodic of period $n + 1$.

Proof.

If n is even, this is true, since we saw $H^i(\mathbb{Z}/2; \mathbb{Z})$ is even periodic. So we need to prove the statement for n odd. We consider the fibration

$$S^n \to S^n/G \to BG$$

Note that $\cdot g : S^n \to S^n$ is fixed point free, and hence has degree 1 (and is orientation preserving). So the action of G on $H^*(S^n)$ is trivial. So we now compute the Serre spectral sequence:

$$E_2^{p,q} = H^q(BG; H^p(S^n; \mathbb{Z})) \Rightarrow H^{p+q}(S^n/G; \mathbb{Z})$$
The only non-trivial differential is a $d_3 : E^i_{2,3} \rightarrow E^{i+3+1,0}_2$.

Furthermore, S^3/G is 3-dimensional, and hence $H^*(S^3/G) \cong 0$ for $* > 3$.

Therefore, $E^{p,q}_\infty = 0$ for $p + q > 3$. For example, the $H^5(G)$ in degree $(5,0)$ must be killed, and so $d_3 : H^1(G) \rightarrow H^5(G)$ must be surjective. But it must also be injective, since $H^1(G)$ in degree 4 cannot survive.
Proposition

G is periodic iff all the abelian subgroups of G are cyclic.

Theorem (Suzuki-Zassenhaus)

There are 6 families of periodic groups.

I $\mathbb{Z}/m \times \mathbb{Z}/n$ with m, n coprime.

II $\mathbb{Z}/m \times (\mathbb{Z}/n \times Q_{2^k})$ with m, n, and 2 coprime.

III $((\mathbb{Z}/m \times \mathbb{Z}/n) \rtimes T_i)$ where m, n, and 6 coprime.

IV Groups coming from $TL_2(\mathbb{F}_3) \cong 2S_4$

V $(\mathbb{Z}/m \times \mathbb{Z}/n) \times SL_2(\mathbb{F}_p)$ with $m, n, (p^2 - 1)$ coprime, $p \geq 5$.

VI Groups coming from $TL_2(\mathbb{F}_p)$ for $p \geq 5$
Example

\(\mathbb{Z}/p \times \mathbb{Z}/p\) does not act freely on \(S^n\):

\[
H^i(\mathbb{Z}/p \times \mathbb{Z}/p; \mathbb{Z}) \cong \begin{cases}
\mathbb{Z} & i = 0 \\
(\mathbb{Z}/p)^{i-1} & i \text{ odd, } i \geq 1 \\
(\mathbb{Z}/p)^{i+2} & i \text{ even, } i \geq 2
\end{cases}
\]

One can deduce this using the Kunneth formula to calculate

\(H^*(\mathbb{Z}/p \times \mathbb{Z}/p; \mathbb{F}_p) \cong \mathbb{F}_p[x_1, x_2] \otimes \Lambda(y_1, y_2)\). We can then use the universal coefficient theorem to recover integral coefficients.
Warning: Not every periodic group with period 4 acts freely on S^3:

Example

S_3 has period 4, but does not act freely on S^3.

\[
H^i(S_3; \mathbb{Z}) \cong \begin{cases}
\mathbb{Z} & i = 0 \\
\mathbb{Z}/2 & i = 2 \mod 4 \\
\mathbb{Z}/6 & i = 0 \mod 4 \\
0 & i \text{ odd}
\end{cases}
\]

Milnor showed that if a finite group G acts freely on S^n, then every element of order 2 in G is central.

Theorem (Madsen-Thomas-Wall)

A finite group G acts freely on some sphere iff G is periodic and every element of order 2 in G is central.
Example

\mathbb{Z}/p acts freely on S^3.
Consider the unit sphere $S^3 \subseteq \mathbb{C}^2$. Then for any q coprime to p, \mathbb{Z}/p acts by multiplication by

$$\begin{bmatrix}
e^{\frac{2\pi i}{p}} & 0 \\
0 & e^{\frac{2\pi qi}{p}}
\end{bmatrix}$$

The quotient manifolds S^3/G are the 3-dimensional lens spaces $L(p; q)$.
Theorem (Suzuki-Zassenhaus)

There are 6 families of periodic groups.

I $\mathbb{Z}/m \rtimes \mathbb{Z}/n$ with m, n coprime.

II $\mathbb{Z}/m \rtimes (\mathbb{Z}/n \times \mathbb{Q}_{2k})$ with m, n, and 2 coprime.

III $(\mathbb{Z}/m \times \mathbb{Z}/n) \rtimes T_i$ where m, n, and 6 coprime.

IV Groups coming from $TL_2(\mathbb{F}_3) \cong 2S_4$

V $(\mathbb{Z}/m \rtimes \mathbb{Z}/n) \times SL_2(\mathbb{F}_p)$ with $m, n, (p^2 - 1)$ coprime, $p \geq 5$.

VI Groups coming from $TL_2(\mathbb{F}_p)$ for $p \geq 5$

Theorem (Madsen-Thomas-Wall)

A finite group G acts freely on some sphere iff G is periodic and every element of order 2 in G is central.
Theorem (Wolf)

There are 5 families of finite groups that act freely on S^3:

- **Cyclic case**: $G \cong \mathbb{Z}/n$
- **Dihedral case**: $G \cong \langle x, y \mid xyx^{-1} = y^{-1}, x^{2m} = y^n \rangle$ for m, n coprime, with $m \geq 1, n \geq 2$. For example, Q_8.
- **Tetrahedral case**: $G \cong \langle x, y, z \mid (xy)^2 = x^2 = y^2, zxz^{-1} = xy, z^{3k} = 1 \rangle$ for $m, 6$ coprime, with $k, m \geq 1$. For example, $2A_4$.
- **Octahedral case**: $G \cong 2S_4$
- **Icosahedral case**: $G \cong 2A_5$

And direct products of any of the above groups with a cyclic group of relatively prime order.
Example

In the cyclic case, the S^3/G are Lens spaces.

Example

In the dihedral case, the S^3/G are Prism manifolds.

Example

In the icosahedral case, $S^3/(2A_5)$ is the Poincare homology sphere.
All the 3-manifolds S^3/G arising from those families have finite fundamental group:

$$\pi_1(S^3/G) \cong G$$

Definition

A 3-manifold is spherical if it is of the form

$$M = S^3/G$$

Classifying these was known as the spherical space form problem.

Theorem (Elliptization conjecture)

A 3-manifold with finite fundamental group is a spherical manifold.

This is equivalent to the Poincare conjecture, and was proved by Perelman.