(a) < (a)

University of Texas at Austin

The Periodicity Theorem, Part I (HHR Section 9.1)

Richard Wong

eCHT Kervaire Invariant One Reading Seminar Fall 2020

Slides can be found at http://www.ma.utexas.edu/users/richard.wong/

Richard Wong

イロト イヨト イヨト イヨト

University of Texas at Austin

The Periodicity Theorem

Theorem (9.21)

Let $G = C_8$, and

$$D = (N_{C_2}^{C_8}\overline{\partial}_4^{C_2})(N_{C_4}^{C_8}\overline{\partial}_2^{C_4})(\overline{\partial}_1^{C_8}) \in \pi_{19
ho_G}^G MU^{((G))}$$

Then multiplication by $(\Delta^G)^{16} := u_{2\rho_G}^{16} (\overline{\partial}_1^{C_8})^{32}$ gives an isomorphism

$$\pi_*(D^{-1}MU^{((G))})^{hG} o \pi_{*+256}(D^{-1}MU^{((G))})^{hG}$$

Richard Wong

イロン 不得 とくきとくきとう

University of Texas at Austin

Periodicity Theorem Overview

- We will use the RO(G)-graded slice spectral sequence to compute π^G_⋆(MU^{((G))}).
 - The E_2 page is given by Proposition 9.7.
 - Differentials are given by Theorem 9.9.
- ▶ We then show that a certain class $\overline{\partial}_k u^{2^k}$ is a permanent cycle (Corollary 9.13).
- This implies that a class (Δ^G)^{2^{g/2}} is a permanent cycle in the RO(G)-graded slice spectral sequence for π^G_⋆(D⁻¹MU^{((G))}).
- This class restricts to a unit in π^u_{*}(D⁻¹MU^{((G))}), and hence multiplication by (Δ^G)^{2^{g/2}} gives us the Periodicity Theorem.

イロト イボト イヨト イヨト

University of Texas at Austin

The RO(G)-graded slice spectral sequence

Theorem

We have the RO(G)-graded slice spectral sequence for $MU^{((G))}$:

$$E_2^{s,t} := \pi_{t-s}^{\mathsf{G}} P_{\dim t}^{\dim t} X \Rightarrow \pi_{t-s}^{\mathsf{G}} MU^{((\mathsf{G}))}$$

with differentials $d_r: E_2^{s,t} \to E_2^{s+r,t+(r-1)}$

Where $t \in -2m\sigma + \mathbb{Z}$

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

Recall that
$$P_0^0 M U^{((G))} \cong H \underline{\mathbb{Z}}_{(2)}$$

Let $\sigma = \sigma_G$ denote the real sign representation of *G*, and recall that in Definition 3.12, we defined an element

$$u = u_{2\sigma} \in \pi_{2-2\sigma}^{\mathsf{G}} H \underline{\mathbb{Z}}_{(2)} = E_2^{0,2-2\sigma}$$

Corresponding to a preferred generator of $\pi_2(H\underline{\mathbb{Z}}_{(2)} \wedge S^{2\sigma})$. We will study the elements

$$u^m \in E_2^{0,2m-2m\sigma}$$

in the RO(G)-graded slice spectral sequence for $\pi^{G}_{\star}(MU^{((G))})$.

Richard Wong

Consider the $\mathbb{Z} \times RO(G)$ -graded ring

 $\mathbb{Z}_{(2)}[a,f_i,u]/(2a,2f_i)$

with $|a| = (1, 1 - \sigma)$, $|f_i| = (i(g - 1), ig)$, and $|u| = (0, 2 - 2\sigma)$

Proposition (9.7)

The map

$$\mathbb{Z}_{(2)}[a,f_i,u]/(2a,2f_i) \to \bigoplus_{\substack{s,k \ge 0\\t \in *-k\sigma}} E_2^{s,t}$$

is an isomorphism in the range

$$s \ge (g-1)((t-s)-(k-k\sigma))$$

Richard Wong

The Periodicity Theorem, Part I (HHR Section 9.1)

University of Texas at Austin

(ロ) (回) (E) (E)

FIGURE 2. The slice spectral sequence for $\pi^G_{-2m\sigma+*}MU^{((G))}$

FIGURE 3. The slice spectral sequence for $\pi^G_{-(2m+1)\sigma+*}MU^{(\!(G)\!)}$

The map

$$\mathbb{Z}_{(2)}[a,f_i,u]/(2a,2f_i) \to \bigoplus_{\substack{s,k \ge 0 \\ t \in *-k\sigma}} E_2^{s,t}$$

is given by

$$f_i \mapsto a^i_{\overline{
ho}} N \overline{r_i} \in \pi^G_i P^{ig}_{ig} MU^{((G))}$$

$$a\mapsto a_{\sigma}\in\pi^{G}_{-\sigma}P^{0}_{0}MU^{((G))}$$

$$u \mapsto u \in \pi_{2-2\sigma}^G P_0^0 M U^{((G))}$$

Richard Wong

The Periodicity Theorem, Part I (HHR Section 9.1)

University of Texas at Austin

イロン イロン イヨン イヨン

University of Texas at Austin

Proposition

In the slice spectral sequence, we have a vanishing line

$$s = (g-1)((t-s)+k\sigma)+k$$

Proof.

This follows by setting $t' = \dim t$ so that $t = t' + (k - k\sigma)$. We then have that

$$E_2^{s,t} = \pi_{t'-s+k}^G S^{k\sigma} \wedge P_{t'}^{t'} MU^{((G))}$$

Note that $S^{k\sigma} \wedge P_{t'}^{t'} MU^{((G))} \ge t'$, so Proposition 4.40 tells us that this group vanishes if $t' - s + k < \lfloor t'/g \rfloor$.

Hence if
$$s > (g - 1)((t - s) + k\sigma) + k$$

Richard Wong

イロト イボト イヨト イヨト

University of Texas at Austin

By the Slice Theorem (Theorem 6.1 cf Theorem 1.13), $P_{t'}^{t'}MU^{((G))}$ is contractible unless t' is even.

If t' is even, then $P_{t'}^{t'}MU^{((G))} \simeq \bigvee H\underline{\mathbb{Z}}_{(2)} \wedge \widehat{S}$, where \widehat{S} is a slice cell of dimension t'.

We compute $E_2^{s,t} = \pi_{t'-s+k}^G S^{k\sigma} \wedge P_{t'}^{t'} MU^{((G))}$ by considering the two cases for \hat{S} :

- 1. Either $\widehat{S} = G_+ \wedge_H S^{\ell' \rho_H}$ is an induced slice cell,
- 2. Or $\hat{S} = S^{\ell \rho_G}$ is an non-induced slice cell.

We will see that in the range $s \ge (g-1)((t-s) - (k-k\sigma))$, the homotopy groups coming from the induced slice cells vanish, and only the non-induced slice cells contribute.

Richard Wong

イロト イボト イヨト イヨト

University of Texas at Austin

Case 1

If $\widehat{S} = G_+ \wedge_H S^{\ell' \rho_H}$ is an induced slice cell, then we are interested in computing $\pi^G_{t'-s+k}$ of

$$S^{k\sigma} \wedge H\underline{\mathbb{Z}}_{(2)} \wedge G_+ \wedge_H S^{\ell'
ho_H}$$

Since the restriction of σ to any proper subgroup is trivial, then this is homotopic to

$$G_{+} \wedge_{H} (S^{k\sigma} \wedge H\underline{\mathbb{Z}}_{(2)} \wedge S^{\ell'\rho_{H}}) \simeq G_{+} \wedge_{H} (S^{k} \wedge H\underline{\mathbb{Z}}_{(2)} \wedge S^{\ell'\rho_{H}})$$

Hence we are interested in computing $\pi^{H}_{t'-s}(H\underline{\mathbb{Z}}_{(2)} \wedge S^{\ell'\rho_{H}})$

Richard Wong

Case 1

By Proposition 4.40, $\pi^H_{t'-s}(H\underline{\mathbb{Z}}_{(2)} \wedge S^{\ell'
ho_H})$ vanishes if

$$t'-s<\ell'=t'/h\qquad (h=|H|)$$

so it in particular vanishes for t' - s < t'/g. Equivalently, it vanishes for

$$s \ge (g-1)((t-s)-(k-k\sigma))$$

Richard Wong

The Periodicity Theorem, Part I (HHR Section 9.1)

University of Texas at Austin

イロト イヨト イヨト イヨト

Case 2

If $\widehat{S} = S^{\ell
ho_G}$ is an non-induced slice cell, then we are interested in computing

$$\pi_j^G(S^{k\sigma} \wedge H\underline{\mathbb{Z}}_{(2)} \wedge S^{\ell\rho_G})$$

for $j \leq \ell + k$ and $\ell, k \geq 0$.

Lemma (9.1)

$$\pi_j^{\mathsf{G}}(S^{k\sigma} \wedge H\underline{\mathbb{Z}}_{(2)} \wedge S^{\ell\rho_{\mathsf{G}}}) \cong$$

$$\begin{cases} 0 & \text{if } (j-\ell) < 0 \text{ or } (j-\ell) \text{ odd} \\ \mathbb{Z}/2 \cdot \{a_{\overline{\rho}}^{\ell} a_{\sigma}^{k-2m} u_{2\sigma}^m\} & \text{if } (j-\ell) = 2m \ge 0 \text{ and } \ell > 0 \\ \mathbb{Z}_{(2)} \cdot \{u_{2\sigma}^m\} & \text{if } (j-\ell) = 2m \ge 0 \text{ and } \ell = 0 \end{cases}$$

Richard Wong

University of Texas at Austin

イロト イロト イヨト イヨト

イロト イボト イヨト イヨト

University of Texas at Austin

Proof.

We write $S^{k\sigma} \wedge S^{\ell\rho_G} = S^{(k+\ell)\sigma} \wedge S^{\ell} \wedge S^{\ell(\rho_G - \sigma - 1)}$ and consider the multiplication map

$$\mathsf{a}^{\ell}_{\overline{\rho}-\sigma}:\pi^{\mathsf{G}}_{j}\mathsf{H}\underline{\mathbb{Z}}_{(2)}\wedge S^{(k+\ell)\sigma}\wedge S^{\ell}\rightarrow \pi^{\mathsf{G}}_{j}\mathsf{H}\underline{\mathbb{Z}}_{(2)}\wedge S^{k\sigma}\wedge S^{\ell\rho_{\mathsf{G}}}$$

We claim that this map is an isomorphism for $j \leq \ell + k$ and $\ell, k \geq 0$.

If $\ell = 0$, this map is an isomorphism.

Richard Wong

University of Texas at Austin

Proof.

For $\ell > 0$, $S^{\ell(\rho_G - \sigma - 1)}$ has one 0-cell, and all other *G*-cells are induced and in positive dimension.

Since the restriction of σ to every proper subgroup is trivial, it follows that to obtain $S^{k\sigma} \wedge S^{\ell\rho_G}$ from $S^{(k+\ell)\sigma} \wedge S^{\ell}$, one attaches induced *G*-cells of dimension greater than $(k + 2\ell)$.

Hence $a_{\overline{\rho}-\sigma}^{\ell}$ is an isomorphism for $j < k + 2\ell$, and hence for $j \leq \ell + k$ since $\ell > 0$.

Therefore, in our range, we are intersted in computing

$$\pi_j^G(H\underline{\mathbb{Z}}_{(2)} \wedge S^{(k+\ell)\sigma} \wedge S^\ell)$$

Which was done in Proposition 3.16.

Richard Wong

化苯基 化苯基

University of Texas at Austin

It remains to identify the summand of non-induced slice cells in $MU^{((G))}$. That is, we need the algebra structure as well.

Recall that we have an associative algebra equivalence

$$\bigvee_{k\in\mathbb{Z}} P_k^k MU^{((G))} \simeq H\underline{\mathbb{Z}}_{(2)} \wedge S^0[G \cdot \overline{r}_1, \cdots]$$

We can do so by identifying the summand of non-induced slice cells in each $S^0[G \cdot \overline{r}_i]$ and smashing them together.

Proposition

The associative algebra map

$$S^0[N\overline{r}_1,\cdots] \to S^0[G\cdot\overline{r}_1,\cdots]$$

is the inclusion of the summand of non-induced slice cells.

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

Proof.

Take the generating inclusion $\bar{r}_i: S^{i\rho_{C_2}} \to S^0[\bar{r}_i]$

We then apply the norm $N_{C_2}^G$ to obtain $N\bar{r}_i: S^{i\rho_G} \to S^0[G \cdot \bar{r}_i]$.

We can then extend it to an associative algebra map $S^0[N\overline{r}_i] \rightarrow S^0[G \cdot \overline{r}_i]$, which we claim is the inclusion of the summand of non-induced slice cells.

Recall that

$$S^0[G \cdot \overline{r}_i] \simeq \bigvee_{f:G/C_2 o \mathbb{N}_0} S^{V_f}$$

Richard Wong

University of Texas at Austin

$$S^0[G \cdot \overline{r}_i] \simeq \bigvee_{f: G/C_2 \to \mathbb{N}_0} S^{V_f}$$

Decompose the right hand side over the G-orbits.

Since an indexed wedge over a *G*-orbit is induced from the stabilizer of any element of the orbit, the summand of non-induced slice cells consists of those f which are constant.

If f is the constant function n, then $V_f = n\rho_G$, hence the summand of non-induced slice cells is

$$\bigvee_{n} S^{n\rho_{G}}$$

Richard Wong

Consider the $\mathbb{Z} \times RO(G)$ -graded ring

 $\mathbb{Z}_{(2)}[a,f_i,u]/(2a,2f_i)$

with $|a| = (1, 1 - \sigma)$, $|f_i| = (i(g - 1), ig)$, and $|u| = (0, 2 - 2\sigma)$

Proposition (9.7)

The map

$$\mathbb{Z}_{(2)}[a,f_i,u]/(2a,2f_i) \to \bigoplus_{\substack{s,k \ge 0\\t \in *-k\sigma}} E_2^{s,t}$$

is an isomorphism in the range

$$s \ge (g-1)((t-s)-(k-k\sigma))$$

Richard Wong

The Periodicity Theorem, Part I (HHR Section 9.1)

University of Texas at Austin

FIGURE 2. The slice spectral sequence for $\pi^G_{-2m\sigma+*}MU^{((G))}$

FIGURE 3. The slice spectral sequence for $\pi^G_{-(2m+1)\sigma+*}MU^{(\!(G)\!)}$

By construction, the f_i represent the elements $f_i = a_{\overline{\rho}_G}^k N \overline{r}_i \in \pi_i^G M U^{((G))}$, and are hence permanent cycles.

Similarly, *a* represents the element $a_{\sigma} \in \pi_{-\theta}^{G} MU^{((G))}$, and also is a permanent cycle.

Theorem (9.9)

In the slice spectral sequence for $\pi^{G}_{\star}(MU^{((G))})$, the differentials $d_{i}(u^{2^{k-1}})$ are zero for $i < r := 1 + (2^{k} - 1)g$, and

$$d_r(u^{2^{k-1}}) = a^{2^k} f_{2^k - 1}$$

Richard Wong

The Periodicity Theorem, Part I (HHR Section 9.1)

University of Texas at Austin

イロン 不得 とくきとくきとう

University of Texas at Austin

Note that on the vanishing line

$$s = (g-1)((t-s) + k\sigma) + k$$

is the algebra

 $\mathbb{Z}_{(2)}[a,f_i]/(2a,2f_i)$

Recall that in Proposition 5.50, the kernel of the map

$$\Phi^{G}: H\underline{\mathbb{Z}}_{(2)}[N\overline{r}_{1},\cdots] \to \pi_{\star}^{G}\Phi^{G}MU^{((G))} = \pi_{\star}MO[a_{\sigma}^{\pm 1}]$$

is the ideal $(2, f_1, f_3, f_7, \cdots)$

Hence any non-trivial differentials into the vanishing line must land in this idea.

Richard Wong

Proof.

We prove the Slice differential theorem by induction on k. Assume the result for k' < k.

In the range $s \ge (g-1)(t-s-(k-k\sigma))$, after resolving the induction differentials, there are two modules over $\mathbb{Z}_{(2)}[f_i]/(2f_i)$: one generated by a^k , which is free over the quotient ring

$$\mathbb{Z}/2[f_i]/(f_1, f_3, \cdots, f_{2^{k-1}-1})$$

and one generated by $u^{2^{k-1}}$.

Since the differential must land in $(2, f_1, f_3, f_7, \cdots)$, for degree reasons, the only possible differential on $u^{2^{k-1}}$ is the one asserted by the theorem. We must show that $u^{2^{k-1}}$ does not survive the spectral sequence.

Richard Wong

< ロ > < 同 > < 三 > < 三

University of Texas at Austin

Proof.

It suffices to do so after inverting *a*. Recall that for $G = C_{2^n}$, up to fibrant replacement,

$$\pi_{\star}\Phi^{G}(X) = \pi^{G}_{\star}(\tilde{E}P \wedge X) \cong a_{\sigma}^{-1}\pi^{G}_{\star}X$$

Inverting a on the map $\pi^{G}_{\star}MU^{((G))} \rightarrow \pi^{G}_{\star}H\underline{\mathbb{Z}}_{(2)}$ yields the map

$$\pi_*\Phi^G(\mathcal{MU}^{((G))}) = \pi_*\mathcal{MO} o \pi_*\Phi^G(\mathcal{H}\underline{\mathbb{Z}}_{(2)})$$

By Proposition 7.6, this map is 0 in positive degrees. However, if $u^{2^{k-1}}$ is a permanent cycle, so is $a^{-2^k}u^{2^{k-1}}$, but this would represent a class $b^{2^{k-1}}$ in $\pi_*\Phi^G(H\underline{\mathbb{Z}}_{(2)})\cong \mathbb{Z}/2[b]$, which is a contradiction.

Richard Wong

University of Texas at Austin

Permanent cycles

Write

$$\overline{\partial}_k = N\overline{r}_{2^k-1} \in \pi^{\mathsf{G}}_{(2^k-1)\rho_{\mathsf{G}}} MU^{((\mathsf{G}))}$$

Note that $f_{2^k-1} = a_{\overline{\rho}}^{2^k-1}\overline{\partial}_k$.

Also observe that we have the identity

$$f_{2^{k+1}-1}\overline{\partial}_k = a_{\overline{\rho}}^{2^{k+1}-1}\overline{\partial}_{k+1}\overline{\partial}_k = f_{2^k-1}a_{\overline{\rho}}^{2^k}\overline{\partial}_{k+1}$$

 $\overline{\partial}_k$ is represented in the RO(G)-graded slice spectral sequence by an element also denoted $\overline{\partial}_k \in \pi^G_{(2^{k-1})\rho_G} P^{(2^{k-1})g}_{(2^{k-1})g} MU^{((G))}$

Richard Wong

Corollary (9.13)

In the RO(G)-graded slice spectral sequence for $MU^{((G))}$, the class $\overline{\partial}_k u^{2^k}$ is a permanent cycle.

Proof.

Set $r = 1 + (2^{k+1} - 1)g$. By the Slice differential theorem, the differentials $d_i(\overline{\partial}_k u^{2^k}) = \overline{\partial}_k d_i(u^{2^k})$ are zero for i < r. Moreover,

$$d_r(\overline{\partial}_k u^{2^k}) = \overline{\partial}_k a^{2^{k+1}} f_{2^{k+1}-1} = a^{2^{k+1}} f_{2^k-1} a_{\overline{\rho}}^{2^k} \overline{\partial}_k$$

However, setting $r' = 1 + (2^k - 1)g$, note that r' < r. We also have

$$d_{r'}(u^{2^{k-1}}a^{2^k}a_{\overline{\rho}}^{2^k}\overline{\partial}_{k+1}) = a^{2^k}f_{2^k-1}a_{\overline{\rho}}^{2^k}\overline{\partial}_{k+1}$$

Therefore, we actually have that $d_r(\overline{\partial}_k u^{2^k}) = 0$.

Richard Wong

イロト イボト イヨト イヨト

University of Texas at Austin

Proof.

It remains to show that the higher differentials vanish. We show that they land in a region that is 0 in the E_2 term.

Note that
$$\overline{\partial}_k u^{2^k} \in \pi^{\mathcal{G}}_{2^k(2-2\sigma)+(2^k-1)\rho_{\mathcal{G}}} P^{(2^{k-1})g}_{(2^{k-1})g} MU^{((\mathcal{G}))}$$

The differential d_{i+1} decreases t - s degree by 1, and increases t degree by i. Hence we wish to study

$$\pi_{2^{k}(2-2\sigma)+(2^{k}-1)\rho_{G}-1}^{G}P_{(2^{k-1})g+i}^{(2^{k-1})g+i}MU^{((G))}$$

or $i+1 > r = 1 + (2^{k+1}-1)g$.

Richard Wong

イロン イヨン イヨン ・

University of Texas at Austin

Proof.

Equivalently, we wish to study

$$\pi^{\mathcal{G}}_{2^{k+1}-1}(S^{2^{k+1}\sigma}\wedge S^{-(2^{k}-1)
ho_{\mathcal{G}}}\wedge P^{(2^{k-1})g+i}_{(2^{k-1})g+i}\mathcal{M}U^{((\mathcal{G}))})$$

We rewrite this as

$$\pi^{\mathsf{G}}_{2^{k+1}-1}(S^{2^{k+1}\sigma}\wedge X_i)$$

Note that $X_i \ge i$, so by Proposition 4.40, $\pi_i^G X_i = 0$ for $j < \lfloor i/g \rfloor$.

Since
$$S^{2^{k+1}\sigma}$$
 is (-1)-connected, then $\pi_{2^{k+1}-1}^{\mathcal{G}}(S^{2^{k+1}\sigma} \wedge X_i)$ vanishes for $i \geq 2^{k+1}g$.

Richard Wong

University of Texas at Austin

Proof.

For the remaining values of *i*, since they are strictly between $2^{k+1}g$ and $(2^{k+1}-1)g$, then *i* is not divisible by *g*. Since $MU^{((G))}$ is pure, then $P_{(2^{k-1})g+i}^{(2^{k-1})g+i}MU^{((G))}$) is induced from a proper subgroup. Therefore, so is X_i .

We therefore have an equivalence

$$S^{2^{k+1}\sigma} \wedge X_i \simeq S^{2^{k+1}} \wedge X_i$$

Therefore, we have that

$$\pi^{\mathcal{G}}_{2^{k+1}-1}(S^{2^{k+1}\sigma}\wedge X_i)=\pi^{\mathcal{G}}_{2^{k+1}-1}(S^{2^{k+1}}\wedge X_i)=0$$

since $X_i \ge 0$.

Richard Wong