An Overview of Algebraic Topology

Richard Wong

UT Austin Math Club Talk, March 2017

Slides can be found at http://www.ma.utexas.edu/users/richard.wong/

Richard Wong

An Overview of Algebraic Topology

University of Texas at Austin

イロン イボン イヨン イ

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

University of Texas at Austin

Outline

Topological Spaces

What are they? How do we build them? When are they the same or different?

Algebraic Topology

Homotopy Fundamental Group Higher Homotopy Groups

Richard Wong

University of Texas at Austin

What are they?

What is a topological space?

- Working definition: A set X with a family of subsets τ satisfying certain axioms (called a topology on X). The elements of τ are the open sets.
 - 1. The empty set and X belong in τ .
 - 2. Any union of members in τ belong in τ .
 - 3. The intersection of a finite number of members in τ of belong in τ .
- Most things are topological spaces.
- ▶ We care about topological spaces with natural topologies.

Topological Spaces		
00000000	õõõooo	
What are they?		

Example (Surfaces)

A surface is a topological space that locally looks like \mathbb{R}^2 .

Source: laerne.github.io

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ めのの

University of Texas at Austin

Richard Wong

Topological Spaces		Summary
0000		
	000000	
What are they?		

Example (Manifolds)

An *n*-manifold is a topological space that locally looks like \mathbb{R}^n .

Richard Wong

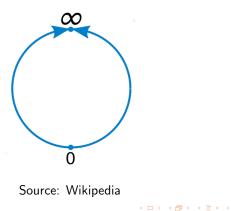
University of Texas at Austin

イロン イロン イヨン イヨン

Topological Spaces ooo● 000 000000000 What are they?	Algebraic Topology 000 000 000000	Summary

Example (Spheres)

An *n*-sphere is the one-point compactification of \mathbb{R}^n . We write it as S^n .



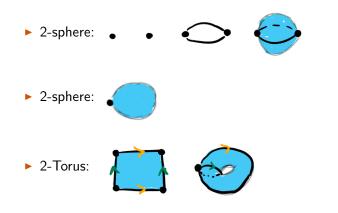
University of Texas at Austin

Richard Wong

Building Topological Spaces

- Abstract toplogical spaces are sometimes hard to get a handle on, so we would like to model them with combinatorial objects, called CW complexes.
- To build a CW complex, you start with a set of points, which is called the 0-skeleton.
- Next, you glue in 1-cells (copies of D¹) to the 0-skeleton, such that the boundary of each D¹ is in the boundary. This forms the 1-skeleton.
- You repeat this process, gluing in *n*-cells (copies of Dⁿ) such that the boundary of each Dⁿ lies inside the (n − 1)-skeleton.

Examples of CW complexes



- * ロ * * @ * * 注 * 注 * うへの

University of Texas at Austin

Richard Wong

Putting CW structures on topological spaces

Theorem (CW approximation theorem)

For every topological space X, there is a CW complex Z and a weak homotopy equivalence $Z \rightarrow X$.

(ロ) (四) (三) (三) (三)

University of Texas at Austin

Richard Wong

When are they the same or different?

When are they the same?

- We almost never have strict equality. So we must choose a perspective of equality to work with.
 - Homeomorphism.
 - Homotopy equivalence.
 - Weak homotopy equivalence.

University of Texas at Austin

< ロ > < 同 > < 回 > < 回 >

Richard Wong

Topological Spaces		Summary
0000000	000000	
When are they the same or different?		

Definition (homeomorphism)

A map $f : X \to Y$ is a **homeomorphism** if f is bijective continuous map and has a continuous inverse $g : Y \to X$.

Source: Wikipedia

The coffee cup and donut are homeomorphic.

Richard Wong

An Overview of Algebraic Topology

University of Texas at Austin

Topological Spaces		
0000000	000000	
When are they the same or different?		

Definition (homotopy equivalence)

A map $f : X \to Y$ is a **homotopy equivalence** if f is continuous and has a continuous homotopy inverse $g : Y \to X$.

The unit ball is homotopy equivalent, but not homeomorphic, to the point.

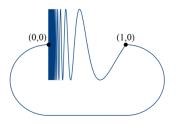
University of Texas at Austin

Richard Wong

Topological Spaces	
0000000	
When are they the same or different?	

Definition (weak homotopy equivalence)

A map $f : X \to Y$ is a **weak homotopy equivalence** if f induces bijections on π_0 and isomorphisms on all homotopy groups.



Source: Math Stackexchange

University of Texas at Austin

The Warsaw circle is weakly homotopy equivalent, but not homotopy equivalent, to the point.

Richard Wong

When are they the same or different?

Comparison of perspectives

Proposition

 $\textit{Homeomorphism} \Rightarrow \textit{Homotopy equivalence} \Rightarrow \textit{Weak homotopy equivalence}.$

When can we go the other way?

Theorem (Whitehead's theorem)

If $f : X \to Y$ is a weak homotopy equivalence of CW complexes, then f is a homotopy equivalence.

University of Texas at Austin

Richard Wong

Topological Spaces	
00000000	
When are they the same or different?	

When are they different?

It's somehow hard to determine whether or not two spaces are the same. It's much easier to tell spaces apart using tools called **invariants**. These invariants depend on your choice of perspective.

Source: laerne.github.io

University of Texas at Austin

Richard Wong

Topological Spaces	
000000000	
When are they the same or different?	

Connectedness

Definition (Connectedness)

A space is **connected** if it cannot be written as the disjoint union of two open sets.

Example

 $\mathbb{R} - \{0\}$ is not connected, but $\mathbb{R}^n - \{0\}$ is for $n \geq 2$.

University of Texas at Austin

Richard Wong

Topological Spaces	
000 000000000	
When are they the same or different?	

Simple-connectedness

Definition (Simple-connectedness)

A space X is **simply connected** if it is path connected and any loop in X can be contracted to a point.

Example

 $\mathbb{R}^2 - \{0\}$ is not simply-connected, but $\mathbb{R}^n - \{0\}$ is for $n \ge 3$.

Richard Wong

University of Texas at Austin

イロト イポト イヨト イヨト

Topological Spaces	
000 00000000	
When are they the same or different?	

- Connectedness and simple-connectedness are a manifestation of counting the number of 0 and 1-dimensional "holes" in a topological space.
- We can generalize this notion to an algebraic invariant called homology.
- This is how we can tell $\mathbb{R}^n \ncong \mathbb{R}^m$ for $n \neq m$.
- It is much easier to calculate things algebraically, rather than rely on geometry.
- Some other useful invariants are cohomology and homotopy groups.

イロト イポト イヨト イヨト

University of Texas at Austin

Homotopy

Homotopy

Definition (homotopy of maps)

A **homotopy** between two continuous maps $f, g : X \to Y$ is a continuous function $H : X \times [0,1] \to Y$ such that for all $x \in X$, H(x,0) = f(x) and H(x,1) = g(x). We write $f \simeq g$.

Proposition

Homotopy defines an equivalence relation on maps from $X \rightarrow Y$.

University of Texas at Austin

Richard Wong

	Algebraic Topology	
	000	
Homotony		

Source: Wikipedia

University of Texas at Austin

Richard Wong

Homotopy

Definition (homotopy equivalence)

A continuous map $f: X \to Y$ is a **homotopy equivalence** if there exists a continuous map $g: Y \to X$ such that $f \circ g \simeq Id_Y$ and $g \circ f \simeq Id_X$. g is called a homotopy inverse of f.

University of Texas at Austin

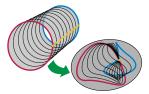
Richard Wong

Fundamental Group

Let us now assume that X is path-connected.

Proposition

The set of loops on X with a fixed base point up to homotopy form a group, where the multiplication is concatenation.



Source: Wikipedia

Richard Wong

An Overview of Algebraic Topology

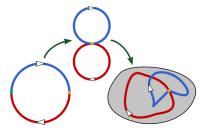
University of Texas at Austin

Fundamental Group

Fundamental Group

Proposition

The set of homotopy classes of based continuous maps $f : S^1 \to X$ form a group, denoted $\pi_1(X)$.



Source: Wikipedia

Richard Wong

University of Texas at Austin

・ロン ・四 と ・ ヨン ・

	Algebraic Topology	
	000	
00000000	000000	
Fundamental Group		

(日) (日) (日) (日) (日)

University of Texas at Austin

Example

If X is contractible, $\pi_1(X) = 0$.

Example

 $\pi_1(S^1) \cong \mathbb{Z}.$

This comes from a covering space calculation.

Example

 $\pi_1(S^n) \cong 0$ for $n \ge 2$.

Richard Wong

University of Texas at Austin

Higher Homotopy Groups

Higher homotopy groups

Proposition

The set of homotopy classes of continuous based maps $f : S^n \to X$ form a group, denoted $\pi_n(X)$

There are lots of calculational tools:

- Long exact sequence of a fibration
- Spectral sequences
- Hurewicz theorem
- Blakers-Massey theorem

Richard Wong

Higher Homotopy Groups

Higher homotopy groups of spheres

	S ⁰	S ¹	S ²	S ³	S ⁴	\mathbb{S}^5	S ⁶	S ⁷	S ⁸
π_1	0	Z	0	0	0	0	0	0	0
π_2	0	0	Z	0	0	0	0	0	0
π_3	0	0	\mathbb{Z}	Z	0	0	0	0	0
π_4	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	0
π_5	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
π_6	0	0	\mathbb{Z}_{12}	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
π_7	0	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}{\times}\mathbb{Z}_{12}$	\mathbb{Z}_2	\mathbb{Z}_2	Z	0
π_8	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	Z
π_9	0	0	\mathbb{Z}_3	\mathbb{Z}_3	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2
π_{10}	0	0	\mathbb{Z}_{15}	\mathbb{Z}_{15}	$\mathbb{Z}_{24}{\times}\mathbb{Z}_3$	\mathbb{Z}_2	0	\mathbb{Z}_{24}	\mathbb{Z}_2
π_{11}	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}	0	\mathbb{Z}_{24}
π_{12}	0	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_{30}	\mathbb{Z}_2	0	0
π_{13}	0	0	$\mathbb{Z}_{12}{\times}\mathbb{Z}_2$	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	\mathbb{Z}_2^3	\mathbb{Z}_2	\mathbb{Z}_{60}	\mathbb{Z}_2	0

Source: HoTT book

Richard Wong

An Overview of Algebraic Topology

University of Texas at Austin

イロン イヨン イヨン イヨン

Higher Homotopy Groups

Freudenthal Suspension Theorem

This is not a coincidence!

Theorem (Corollary of Freudenthal Suspension Theorem)

For $n \ge k + 2$, there is an isomorphism

$$\pi_{k+n}(S^n) \cong \pi_{k+n+1}(S^{n+1})$$

The general theorem says that for fixed k, there is stabilization for highly-connected spaces. We can make spaces highly connected via suspension.

(ロ) (部) (注) (注)

University of Texas at Austin

	Algebraic Topology	
	000000	
Higher Homotony Crouns		

Stable homotopy theory

Definition (stable homotopy groups of spheres)

The k-th stable homotopy group of spheres, $\pi_k^S(S)$, is $\pi_{k+n}(S^n)$ for $n \ge k+2$.

- This is an algebraic phenomenon, and one might wonder if there is a corresponding topological/geometric concept.
- ► Recall that homotopy groups of X are homotopy classes of maps from Sⁿ → X. Is there a corresponding notion for stable homotopy groups?
- ► The answer is **yes**!
- This leads to the notion of spectra, which is the stable version of a space, and to stable homotopy theory.

University of Texas at Austin

Stable homotopy theory

- Working definition: A spectrum is a sequence of spaces X_n with structure maps ΣX → X_{n+1}.
- Given a space X, you can obtain the suspension spectrum Σ[∞]X with identities as the structure maps.
- ► For example, the sphere spectrum S is the suspension spectrum of the sphere.

An Overview of Algebraic Topology

Richard Wong

	Algebraic Topology	
	000000	
Higher Homotopy Groups		

The k-th stable homotopy groups of a space X are homotopy classes of maps from (the k-shifted) sphere spectrum S to the suspension spectrum Σ[∞]X.

$$\pi_k^{\mathcal{S}}(X) = [\Sigma^k \mathbb{S}, \Sigma^\infty X]_{\mathsf{Sp}}$$

We can do the same thing with generalized cohomology theories, which are other algebraic invariants.

$$E^n(X)\cong [X,E_n]_{\mathsf{Top}}$$

イロン イボン イヨン イ

University of Texas at Austin

Richard Wong

Summary

- We would like to understand when two topological spaces are the same or different. This depends on our choice of perspective.
- In particular, we would like to compute invariants that can help us answer this question. We use geometric, combinatorial, and algebraic tools to do so.
- Studying these invariants often leads to fascinating new patterns, which in turn brings us new geometric insights like stable phenomena.

University of Texas at Austin