Classical Cases

Generalizations

Invertible Objects: An Elementary Introduction to Picard Groups

Richard Wong

Math Club 2020

Slides can be found at http://www.ma.utexas.edu/users/richard.wong/

Richard Wong

University of Texas at Austin

(a) < (a)

How many numbers have inverses?

- (\mathbb{N}, \times) has one invertible element, 1.
- $(\mathbb{N}_{\geq 0}, +)$ has one invertible element, 0.
- (\mathbb{Z}, \times) has two invertible elements, 1 and -1.
- $(\mathbb{Z}, +)$ every element is invertible.
- ▶ (Q, ×) every element except 0 is invertible.

イロト イボト イヨト イヨト

イロト イボト イヨト イヨト

University of Texas at Austin

Recall that a ring R is a set with two operations, + and \times such that

- ▶ + is associative and commutative, with additive identity 0.
- Every element has an additive inverse.
- \blacktriangleright × is associative, with multiplicative identity 1.
- Distributive axioms.

Example

Our favorite examples of rings include \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{Z}/n , $\mathbb{Z}[x]$, $\mathbb{Q}[x]$.

Richard Wong

イロト イボト イヨト イヨト

University of Texas at Austin

Given a ring R, one can always ask what the invertible elements (with respect to \times) are.

Definition

The set of invertible elements in a ring R is denoted by

$$R^{\times} := \{ r \in R \mid r \times s = s \times r = 1 \}$$

Note that 0 is never in R^{\times} (except if R = 0).

Note that R^{\times} is closed under \times , and in fact forms a group under \times . It is usually referred to as the group of units.

Richard Wong

Example

- $\blacktriangleright \mathbb{Z}^{\times} = \{1, -1\}$
- $\blacktriangleright \ \mathbb{Q}^{\times} = \mathbb{Q} \setminus \mathbf{0}$

$$\blacktriangleright \ \mathbb{R}^{\times} = \mathbb{R} \setminus \mathbf{0}$$

• $(\mathbb{Z}/n)^{\times} = \{[m] \mid 0 \le m \le n, m \text{ coprime to } n\}$

Richard Wong

University of Texas at Austin

3

イロト イヨト イヨト イヨト

Question: When is an element r of R invertible?

Theorem

The following are equivalent:

- (i) There exists an element of R, s, such that $r \times s = 1$.
- (ii) The map given by multiplication by $r : R \to R$ is an isomorphism.

Richard Wong

University of Texas at Austin

イロト イポト イヨト イヨト

Proposition

For R a commutative ring, the group of units of R[x] is as follows:

$$(R[x])^{\times} = \{p(x) \mid p(x) = \sum a_i x^i \text{ such that } a_0 \in R^{\times}, a_i \text{ nilpotent}\}$$

Challenge: Prove it!

Example

If R is an integral domain, then $(R[x])^{\times} = R^{\times}$.

Richard Wong

Invertible Objects: An Elementary Introduction to Picard Groups

University of Texas at Austin

R-modules

How can we generalize this idea?

From now onwards, let R be a commutative ring.

Instead of trying to study R by itself, one might instead study Mod(R), the category of modules over R.

Richard Wong

University of Texas at Austin

イロト イポト イヨト イヨト

Recall that an *R*-module is an abelian group (M, +), and an operation $\cdot : R \times M \rightarrow M$ such that

- is associative
- ▶ $1 \cdot m = m$ for all $m \in M$
- is distributive over addition.

Example

If k is a field, then k-modules are exactly the same as k-vector spaces.

イロト イポト イヨト イヨト

University of Texas at Austin

Richard Wong

R-modules

Example

For $R = \mathbb{Z}$, the notion of \mathbb{Z} -module is exactly the same as an abelian group. (That is, every abelian group is a module over \mathbb{Z} in a unique way.)

Richard Wong

University of Texas at Austin

(ロ) (回) (E) (E)

R-modules

In Mod(*R*), we have an operation called tensor product, denoted \otimes_R or \otimes , which satisfies the following properties:

- **1**. It has a unit, given by $R: M \otimes_R R \cong M \cong R \otimes_R M$.
- 2. It is associative: $(M \otimes N) \otimes P \cong M \otimes (N \otimes P)$.
- **3**. It is symmetric: $M \otimes N \cong N \otimes M$.
- 4. It distributes over direct sums: $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P).$
- 5. The scalar multiplication on $M \otimes N$ is given by scalar multiplication on M or equivalently by scalar multiplication on N (which are forced to be equal).

イロト イポト イヨト イヨト

University of Texas at Austin

 $r \cdot (M \otimes N) \cong (r \cdot M) \otimes N \cong M \otimes (r \cdot N).$

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

R-modules

Example

If k is a field, and V and W are modules (vector spaces) over k with bases $\{e_i\}$ and $\{f_j\}$ respectively, then $V \otimes W$ is defined to be the vector space with basis given by $\{e_i \otimes f_j\}$. For example, on elements, if $v = a_1e_1 + a_2e_2 \in V$ and $w = b_1f_1 + b_2f_2 \in W$, then $v \otimes w = a_1e_1 \otimes b_1f_1 + a_1e_1 \otimes b_2f_2 + a_2e_2 \otimes b_1f_1 + a_2e_2 \otimes b_2f_2$ $= a_1b_1(e_1 \otimes f_1) + a_1b_2(e_1 \otimes f_2) + a_2b_1(e_2 \otimes f_1) + a_2b_2(e_2 \otimes f_2)$.

Challenge: Does $v \otimes w$ depend on the choice of basis?

University of Texas at Austin

R-modules

Example

However, if R is a commutative ring, and M and N are R-modules, then $M \otimes N$ is merely *spanned* by elements $m \otimes n$. We have distributivity:

$$(m+m')\otimes n=m\otimes n+m'\otimes n$$

$$m\otimes (n+n')=m\otimes n+m\otimes n'$$

And scalar multiplication tells us:

$$r \cdot (m \otimes n) = (r \cdot m) \otimes n = m \otimes (r \cdot n)$$

Challenge: How can we define equality of elements without a basis?

Richard Wong

R-modules

Question: When is a module N invertible with respect to \otimes ? Given an R-module N, we have a functor

 $-\otimes_R N: \operatorname{Mod}(R) \to \operatorname{Mod}(R)$

Analogy: Given an element $r \in R$, we have a map $- \times r : R \to R$.

Richard Wong

Invertible Objects: An Elementary Introduction to Picard Groups

University of Texas at Austin

イロン イヨン イヨン ・

イロト イポト イヨト イヨト

University of Texas at Austin

R-modules

Theorem

The following are equivalent:

- (i) There exists an R-module M such that $M \otimes N \cong R$. We say that N is invertible.
- (ii) $-\otimes N : Mod(R) \to Mod(R)$ is an equivalence of categories. (Analogy: $-\times r : R \to R$ an isomorphism)
- (iii) N is finitely generated projective module of rank 1.

In fact, in case (ii) we have that $M \cong \text{Hom}_R(N, R)$.

Observation: The set of isomorphism classes of invertible *R*-modules has a group structure:

Definition

The Picard group of R, denoted Pic(R), is the set of isomorphism classes of invertible modules, with

 $[M] \cdot [N] = [M \otimes N]$

 $[M]^{-1} = [\operatorname{Hom}_R(M, R)]$

Richard Wong

Invertible Objects: An Elementary Introduction to Picard Groups

University of Texas at Austin

イロト イポト イヨト イヨト

R-modules

Example

For R a local ring or PID, Pic(R) is trivial.

Proof.

For local rings/PIDs, a module is projective iff it is free. Hence $M \in Pic(R)$ iff M is a free rank 1 R-module.

Richard Wong

University of Texas at Austin

イロト イポト イヨト イヨト

Chain Complexes of *R*-modules

Let's see what happens if we work with chain complexes of R-modules, Ch(R), instead.

Definition

A chain complex of *R*-modules is a sequence of *R*-modules A_k , along with homomorphisms (called **differentials**) $d_k : A_k \to A_{k-1}$, such that for all k, $d_k \circ d_{k+1} = 0$.

$$\cdots \xrightarrow{d_{k+2}} A_{k+1} \xrightarrow{d_{k+1}} A_k \xrightarrow{d_k} A_{k-1} \xrightarrow{d_{k-1}} \cdots$$

Richard Wong

Invertible Objects: An Elementary Introduction to Picard Groups

University of Texas at Austin

イロト イポト イヨト イヨト

Chain Complexes of *R*-modules

Example

Given an integer n, and an R-module M, there is a chain complex M[n] given by

$$(M[n])_k = \begin{cases} M \ k = n \\ 0 \ \text{else} \end{cases}$$

$$\dots \to 0 \to M \to 0 \to \dots$$

Richard Wong

Invertible Objects: An Elementary Introduction to Picard Groups

University of Texas at Austin

イロト イポト イヨト イヨト

Chain Complexes of *R*-modules

Definition

The tensor product of two chain complexes X_{\bullet} and Y_{\bullet} is defined at degree *n* by

$$(X \otimes Y)_k = \bigoplus_{i+j=k} (X_i \otimes Y_j)$$

This tensor product is also associative and symmetric, and has unit given by R[0].

イロト イポト イヨト イヨト

University of Texas at Austin

Challenge: What are the differentials for $(X \otimes Y)_{\bullet}$?

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

Question: When is Y_{\bullet} invertible?

Theorem

Chain Complexes of R-modules

The following are equivalent for a local ring R:

- (i) Y_● is invertible. That is, there exists a chain complex X_● such that X_● ⊗ Y_● ≅ R[0].
- (ii) $-\otimes Y_{\bullet} : Ch(R) \to Ch(R)$ is an equivalence of categories.
- (iii) Y_• is the chain complex R[n], that is, the complex R concentrated in a single degree n.

Example

For R a local ring, Pic(Ch(R)) is isomorphic to \mathbb{Z} .

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

Generalizations

What did we need to define Pic(R) and Pic(Ch(R))?

We only really needed the associative, symmetric, and unital structure of $\otimes.$

Definition

Suppose we have a category C that has bifunctor $\otimes : C \times C \to C$ with unit 1 and is associative and symmetric. Then we say that $(C, \otimes, 1)$ is a **symmetric monoidal category**.

Symmetric Monoidal Categories

Example

The following categories are symmetric monoidal:

(a) (Set,
$$\times, \{*\}$$
)

(b) (Group,
$$\times$$
, {e})

(c)
$$(Mod(R), \otimes, R)$$

(d)
$$(Ch(R), \otimes, R[0])$$

Richard Wong

University of Texas at Austin

(ロ) (回) (E) (E)

	Generalizations 00● 00000
Symmetric Monoidal Categories	

Definition

The Picard group of a symmetric monoidal category $(\mathcal{C}, \otimes, 1)$, denoted Pic (\mathcal{C}) , is the set of isomorphism classes of invertible objects X, with

$$[X] \cdot [Y] = [X \otimes Y]$$
$$[M]^{-1} = [\operatorname{Hom}_{\mathcal{C}}(X, 1)]$$

イロト イポト イヨト イヨト

University of Texas at Austin

Example

We have that Pic(R) = Pic(Mod(R)).

Richard Wong

However, we had more interesting structure in Pic(Ch(R)) since we could shift the unit R[0] up or down.

"Definition"

A symmetric monoidal category $(\mathcal{C}, \otimes, 1)$ is called **stable** if it also has a suspension functor $\Sigma : \mathcal{C} \to \mathcal{C}$ that is an equivalence of categories.

In addition, Σ should play nicely with the tensor product. That is, $\Sigma(A \otimes B) \cong \Sigma A \otimes B$.

Warning: This definition is only right when using ∞ -categories. (**Stable** has homotopical meaning). Alternatively, we can make a similar definiton using triangulated categories.

イロト イポト イヨト イヨト

University of Texas at Austin

	Generalizations ○○○ ○●○○○
Stable Symmetric Monoidal Categories	

Example

The following categories are stable symmetric monoidal:

- (a) $(D(R), \hat{\otimes}_R, R[0], -[1])$ for R a commutative ring.
- (b) $(Sp, \land, \mathbb{S}, \Sigma)$
- (c) $(Mod(R), \wedge_R, R, \Sigma)$ for R a commutative ring spectrum.
- (d) $(L_E(Sp), L_E(- \wedge -), L_E \mathbb{S}, \Sigma)$ for a spectrum *E*. In particular, E = E(n) or K(n).

イロト イポト イヨト イヨト

University of Texas at Austin

(e) $(StMod(kG), \otimes_k, k, \Omega^{-1})$ for G a p-group and k a field of characteristic p.

Richard Wong

	Generalizations ○○○ ○○●○○
Stable Symmetric Monoidal Categories	

Theorem (Hopkins-Mahowald-Sadofsky)

 $\mathsf{Pic}(\mathsf{Sp})\cong\mathbb{Z}$

Proposition (Baker-Richter)

For R a commutative ring spectrum, we have a monomorphism

$$\Phi: \operatorname{Pic}(\pi_*(R)) \hookrightarrow \operatorname{Pic}(R)$$

Richard Wong

Invertible Objects: An Elementary Introduction to Picard Groups

University of Texas at Austin

Stable Symmetric Monoidal Categories

"Theorem" (Hopkins)

For the spectra K(n) and E(n) at some fixed prime p, the Picard groups $Pic(L_{E(n)}(Sp))$ and $Pic(L_{K(n)}(Sp))$ are extremely interesting.

This is a subject of active research!

Richard Wong

University of Texas at Austin

イロト イポト イヨト イヨト

Stable Symmetric Monoidal Categories

Thanks for listening!

Richard Wong

University of Texas at Austin

イロン イロン イヨン イヨン