Number Games:

Pandigital Numbers, Friedman Numbers, and e

Richard Wong

SMMG 2020

Slides and worksheets can be found at
http://www.ma.utexas.edu/users/richard.wong/Notes.html

Pandigital Numbers

Definition

A pandigital number is an integer that uses each digit 0-9 exactly once in the significant digits of its decimal representation.

Example

- 1234567890 is a pandigital number.
- 0123456789 is not.
- 11234567890 is not a pandigital number, but it is a pandigital number with redundant digits.

Pandigital Numbers

Definition

A pandigital number with redundant digits is an integer that uses each digit 0-9 at least once in the significant digits of its decimal representation.

Definition

A pandigital number is an integer that uses each digit 0-9 exactly once in the significant digits of its decimal representation.

Work on the Pandigital numbers section of the worksheet!

Friedman numbers

Definition

A Friedman number is an integer that can be non-trivially expressed as a formula using each of its significant digits exactly once, along with the operations (,,$+- \times, \div$), additive inverses, parentheses, and exponentiation.

Example

- (n) is a trivial way to express an integer n. So that means that the single digit numbers cannot be Friedman numbers.
- 343 is a Friedman number, since $(3+4)^{3}=343$.

Work on the Friedman numbers section of the worksheet!

Euler's constant

So far today we have been investigating numbers and their decimal representations.

However, we will now investigate a number that is irrational, and even transcendental.

$$
e=2.718281828459045
$$

However, we don't need to know the significant digits of a number to define it.

$$
\sum_{k=0}^{\infty} \frac{1}{k!}=e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

We can use these formulas (among others) to approximate the digits of e.

Work on the Approximating e section of the worksheet!

How closely do you think we can approximate e using a pandigital formula, using the operations $(+,-, \times, \div)$, additive inverses, parentheses, and exponentiation?

A pandigital formula

$$
e \approx\left(1+9^{-4^{6 \times 7}}\right)^{3^{2^{85}}}+0
$$

This formula was found by Richard Sabey in 2004, and is correct to 18×10^{24} digits.

That's 18 trillion trillion digits!

The inspiration

$$
e \approx\left(1+9^{-4^{6 \times 7}}\right)^{3^{2^{85}}}+0
$$

- First recall that $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
- Now note that $3^{2^{85}}=9^{2^{84}}=9^{4^{42}} 9^{4^{6 \times 7}}$.
- Then, set $n=3^{2^{85}} \approx 1.846 \times 10^{25}$.

The error term

To approximately determine the error term, we need some analysis.

- Note that $\left(1+\frac{1}{n}\right)^{n}<e<\left(1+\frac{1}{n}\right)^{n+1}$.
- Therefore,

$$
\begin{aligned}
e-\left(1+\frac{1}{n}\right)^{n} & <\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n}\right)^{n} \\
& =\left(1+\frac{1}{n}\right)^{n}\left(\frac{1}{n}\right) \\
& =\frac{e}{n}
\end{aligned}
$$

- Hence, given a choice of n, the error term is less than $\frac{e}{n}$.

