Number Games: Pandigital Numbers, Friedman Numbers, and *e*

Richard Wong

SMMG 2020

Slides and worksheets can be found at http://www.ma.utexas.edu/users/richard.wong/Notes.html

Richard Wong Number Games: University of Texas at Austin

(ロ) (回) (E) (E)

Pandigital Numbers

Definition

A **pandigital number** is an integer that uses each digit 0-9 **exactly once** in the significant digits of its decimal representation.

Example

- ▶ 1234567890 is a pandigital number.
- 0123456789 is not.
- 11234567890 is not a pandigital number, but it is a pandigital number with redundant digits.

(a)

University of Texas at Austin

Richard Wong

Pandigital Numbers

Definition

A pandigital number with redundant digits is an integer that uses each digit 0-9 at least once in the significant digits of its decimal representation.

Definition

A **pandigital number** is an integer that uses each digit 0-9 **exactly once** in the significant digits of its decimal representation.

Richard Wong

Number Games:

University of Texas at Austin

イロト イポト イヨト イヨト

Work on the Pandigital numbers section of the worksheet!

University of Texas at Austin

Richard Wong

イロト イボト イヨト イヨト

University of Texas at Austin

Friedman numbers

Definition

A **Friedman number** is an integer that can be non-trivially expressed as a formula using each of its significant digits exactly once, along with the operations $(+, -, \times, \div)$, additive inverses, parentheses, and exponentiation.

Example

- (n) is a trivial way to express an integer n. So that means that the single digit numbers cannot be Friedman numbers.
- 343 is a Friedman number, since $(3+4)^3 = 343$.

Richard Wong

Work on the Friedman numbers section of the worksheet!

University of Texas at Austin

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

Euler's constant

So far today we have been investigating numbers and their decimal representations.

However, we will now investigate a number that is **irrational**, and even **transcendental**.

 $e = 2.718281828459045\ldots$

Richard Wong

However, we don't need to know the significant digits of a number to define it.

$$\sum_{k=0}^{\infty} \frac{1}{k!} = e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

(ロ) (回) (E) (E)

University of Texas at Austin

We can use these formulas (among others) to approximate the digits of e.

Work on the Approximating *e* section of the worksheet!

University of Texas at Austin

Richard Wong

How closely do you think we can approximate eusing a pandigital formula, using the operations $(+, -, \times, \div)$, additive inverses, parentheses, and exponentiation?

University of Texas at Austin

Richard Wong

(ロ) (回) (E) (E)

University of Texas at Austin

A pandigital formula

$$e \approx (1+9^{-4^{6\times 7}})^{3^{2^{85}}}+0$$

This formula was found by Richard Sabey in 2004, and is correct to 18×10^{24} digits.

That's 18 trillion trillion digits!

Richard Wong

2

University of Texas at Austin

イロン イロン イヨン イヨン

The inspiration

$$e \approx (1+9^{-4^{6 \times 7}})^{3^{2^{85}}}+0$$

First recall that
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
.

• Now note that
$$3^{2^{85}} = 9^{2^{84}} = 9^{4^{42}}9^{4^{6\times 7}}$$
.

• Then, set
$$n = 3^{2^{85}} \approx 1.846 \times 10^{25}$$
.

Richard Wong

	Approximating <i>e</i>

The error term

To approximately determine the error term, we need some analysis.

• Note that $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$.

Therefore,

$$e - \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right)^n$$
$$= \left(1 + \frac{1}{n}\right)^n \left(\frac{1}{n}\right)$$
$$= \frac{e}{n}$$

< ロ > < 同 > < 三 > < 三 >

University of Texas at Austin

• Hence, given a choice of *n*, the error term is less than $\frac{e}{n}$.

Richard	Wong
Number	Games