イロト イポト イヨト イヨト

University of Texas at Austin

Picard Groups of Stable Module Categories

Richard Wong

GROOT Summer Seminar 2020

Slides can be found at http://www.ma.utexas.edu/users/richard.wong/

Richard Wong

University of Texas at Austin

Let k be a field of positive characteristic p, and let G be a finite group such that $p \mid |G|$.

We are interested in studying Mod(kG), the category of modules over the group ring kG. This is the setting of **modular** representation theory.

In this setting, Maschke's theorem does not apply:

Theorem (Maschke)

The group algebra kG is semisimple iff the characteristic of k does not divide the order of G.

In particular, one corollary is that not every module in Mod(kG) is projective.

Richard Wong

イロン イヨン イヨン ・

University of Texas at Austin

Definition

The **stable module category** StMod(kG) has objects kG-modules, and has morphisms

 $\underline{\mathrm{Hom}}_{kG}(M,N) = \mathrm{Hom}_{kG}(M,N)/\mathrm{PHom}_{kG}(M,N)$

where $PHom_{kG}(M, N)$ is the linear subspace of maps that factor through a projective module.

Definition

We say two maps $f, g : M \to N$ are **stably equivalent** if f - g factors through a projective module.

Richard Wong

イロト イヨト イヨト イ

University of Texas at Austin

Proposition

StMod(kG) is the homotopy category of a stable model category structure on Mod(kG).

The weak equivalences are the stable equivalences.

The fibrations are surjections. The acyclic fibrations are surjections with projective kernel.

The suspension of a module M is denoted $\Omega^{-1}(M)$, and is constructed as the cofiber of an inclusion into an injective module:

$$M \hookrightarrow I \to \Omega^{-1}(M)$$

Proposition

StMod(kG) is a stable symmetric monoidal ∞ -category.

Richard Wong

From now on, we restrict our attention to the case that G is a finite p-group, so that the following theorem holds:

Theorem (Mathew)

There is an equivalence of symmetric monoidal ∞ -categories StMod(kG) \simeq Mod(k^{tG})

Remark

The proof goes through the identifications

 $\operatorname{Ind}(\operatorname{Fun}(BG,\operatorname{Perf}(k)))\cong \operatorname{Mod}(k^{hG})$

and for $A = F(G_+, k)$,

 $\mathsf{StMod}(kG) \cong L_{A^{-1}}\mathsf{Ind}(\mathsf{Fun}(BG,\mathsf{Perf}(k)))$

Richard Wong

Picard Groups of Stable Module Categories

University of Texas at Austin

イロト イポト イヨト イヨ

University of Texas at Austin

The spectrum $k^{hG} \simeq F(BG_+, k)$ is the E_{∞} ring of cochains on BG with coefficients in k. It is also the *G*-homotopy fixed points of k with the trivial action.

Proposition

There is an isomorphism of graded rings

$$\pi_*(k^{hG})\cong H^{-*}(G;k)$$

Example

For
$$p = 2$$
, $\pi_*(k^{h(\mathbb{Z}/2)^n}) \cong k[x_1, ..., x_n]$ with $|x_i| = 1$.
For p odd, $\pi_*(k^{h(\mathbb{Z}/p)^n}) \cong k[x_1, ..., x_n] \otimes \Lambda(y_1, ..., y_n)$ with $|x_i| = 2, |y_i| = 1$.

Richard Wong

< ロ > < 同 > < 三 > < 三

University of Texas at Austin

Theorem

We have the homotopy fixed point spectral sequence, which takes in input the spectrum R with a G-action, and computes $\pi_*(R^{hG})$:

$$E_2^{s,t}(R) = H^s(G; \pi_t(R)) \Rightarrow \pi_{t-s}(R^{hG})$$

There is also a notion of **homotopy orbits** k_{hG} , and homotopy orbit spectral sequence.

Proposition

There is an isomorphism

$$\pi_*(k_{hG})\cong H_*(G;k)$$

Richard Wong

University of Texas at Austin

Just like there is a norm map in group cohomology

$$N_G: H_*(G; k) \rightarrow H^*(G; k)$$

there is a norm map $N_G: k_{hG} \to k^{hG}$.

And just as one can stitch together group homology and cohomology via the norm map to form Tate cohomology,

$$\widehat{H}^{i}(G;k) \cong \begin{cases} H^{i}(G;k) & i \geq 1\\ \operatorname{coker}(N_{G}) & i = 0\\ \operatorname{ker}(N_{G}) & i = -1\\ H_{-i-1}(G;k) & i \leq -2 \end{cases}$$

Definition

The Tate fixed points are the cofiber of the norm map:

$$k_{hG} \xrightarrow{N_G} k^{hG}
ightarrow k^{tG}$$

Richard Wong

< D > < P > < P > <</p>

University of Texas at Austin

We have the Tate fixed point spectral sequence, which takes in input the spectrum R with a G-action, and computes $\pi_*(R^{tG})$:

$$E_2^{s,t}(R) = \widehat{H}^s(G; \pi_t(R)) \Rightarrow \pi_{t-s}(R^{tG})$$

Remark

The multiplication of elements in negative degrees in $\pi_*(k^{tG})$ is the same as the multiplication in $\pi_*(k^{hG})$.

Multiplication by elements in positive degrees is more complicated. For example, if G is an elementary abelian group of p-rank ≥ 2 ,

$$\pi_n(k^{tG})\cdot\pi_m(k^{tG})=0$$

for all n, m > 0.

Richard Wong

University of Texas at Austin

Theorem (Mathew)

For G a finite p-group, there is an equivalence of symmetric monoidal ∞ -categories

 $\mathsf{StMod}(kG) \simeq \mathsf{Mod}(k^{tG})$

Remark

Historically, the study of StMod(kG) was very closely related to the study of group and Tate cohomology.

Richard Wong

Ernie break

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 • つへで

Richard Wong

University of Texas at Austin

University of Texas at Austin

Definition

The **Picard group** of a symmetric monoidal $(\infty$ -)category $(\mathcal{C}, \otimes, 1)$, denoted $\text{Pic}(\mathcal{C})$, is the set of isomorphism classes of invertible objects X, with

 $[X] \cdot [Y] = [X \otimes Y]$ $[X]^{-1} = [\operatorname{Hom}_{\mathcal{C}}(X, 1)]$

Richard Wong

University of Texas at Austin

Example

The following are examples of stable symmetric monoidal ∞ -categories:

(a)
$$(Sp, \land, \mathbb{S}, \Sigma)$$

(b) $(D(R), \hat{\otimes}_R, R[0], -[1])$ for R a commutative ring.

- (c) $(Mod(R), \wedge_R, R, \Sigma)$ for R a commutative ring spectrum.
- (d) $(\mathsf{StMod}(kG), \otimes_k, k, \Omega^{-1})$ in modular characteristic.

Richard Wong

University of Texas at Austin

Theorem (Hopkins-Mahowald-Sadofsky)

 $Pic(Sp) \cong \mathbb{Z}$ That is, for any $X \in Pic(Sp)$, we have that $X \cong \Sigma^{i} \mathbb{S}$ for some $i \in \mathbb{Z}$.

Theorem (Dade)

Let E denote an abelian p-group. Then Pic(StMod(kE)) is cyclic.

Richard Wong

イロン イボン イヨン イヨン

University of Texas at Austin

Given a symmetric monoidal ∞ -category \mathcal{C} , one can do better than the Picard group:

Definition

The **Picard space** $\mathcal{P}ic(\mathcal{C})$ is the ∞ -groupoid of invertible objects in \mathcal{C} and isomorphisms between them.

This is a group-like E_{∞} -space, and so we equivalently obtain the connective **Picard spectrum** $\mathfrak{pic}(\mathcal{C})$.

Proposition

The functor $\mathfrak{pic}:\mathsf{Cat}^\otimes\to\mathsf{Sp}_{\geq 0}$ commutes with limits and filtered colimits.

Richard Wong

University of Texas at Austin

Example

Let R be an E_{∞} -ring spectrum. The homotopy groups of $\mathfrak{pic}(R)$ are given by:

$$\pi_*(\mathfrak{pic}(R)) \cong \left\{ egin{array}{ll} \operatorname{Pic}(R) & *=0 \ (\pi_0(R))^{ imes} & *=1 \ \pi_{*-1}(\mathfrak{gl}_1(R)) \cong \pi_{*-1}(R) & *\geq 2 \end{array}
ight.$$

Note that the isomorphism $\pi_*(\mathfrak{gl}_1(R)) \cong \pi_*(R)$ for $* \ge 1$ is usually not compatible with the ring structure.

Richard Wong

イロン イロン イヨン イヨン

University of Texas at Austin

Ernie break

Ernie's 2019 Halloween Costume

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

Theorem (Mathew-Stojanoska)

If $f : R \to S$ is a faithful G-Galois extension of E_{∞} ring spectra, then we have an equivalence of ∞ -categories

 $Mod(R) \cong Mod(S)^{hG}$

Corollary

We have the homotopy fixed point spectral sequence, which takes in input the spectrum pic(S) and has E_2 page:

$$H^{s}(G; \pi_{t}(pic(S)) \Rightarrow \pi_{t-s}(pic(S)^{hG}))$$

whose abutment for t = s is Pic(R).

Richard Wong

Definition

A map $f: R \to S$ of E_∞ -ring spectra is a G-Galois extension if the maps

(i) $i: R \to S^{hG}$ (ii) $h: S \otimes_R S \to F(G_+, S)$

are weak equivalences.

Definition

A *G*-Galois extension of E_{∞} -ring spectra $f : R \to S$ is said to be **faithful** if the following property holds:

If *M* is an *R*-module such that $S \otimes_R M$ is contractible, then *M* is contractible.

Richard Wong

Picard Groups of Stable Module Categories

University of Texas at Austin

イロト イボト イヨト イヨト

University of Texas at Austin

Example

 $KO \rightarrow KU$ is a faithful $\mathbb{Z}/2$ -Galois extension of ring spectra. Note that $\pi_*(KU) \cong \mathbb{Z}[u^{\pm 1}]$ with |u| = 2., which is very homologically simple. On the other hand, $\pi_*(KO)$ is more complicated.

Proposition (Rognes)

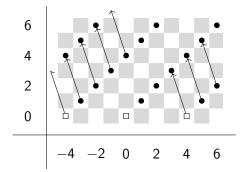
A G-Galois extension of E_{∞} -ring spectra $f : R \to S$ is faithful if and only if the Tate construction S^{tG} is contractible.

Richard Wong

(ロ) (回) (E) (E)

University of Texas at Austin

$$E_2^{s,t} = H^s(\mathbb{Z}/2; \pi_t(KU)) \Rightarrow \pi_{t-s}(KU^{h\mathbb{Z}/2})$$



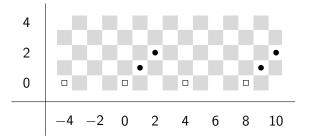
The Adams graded $\mathbb{Z}/2$ -HFPSS computing $\pi_*(KU^{h\mathbb{Z}/2}) \cong \pi_*(KO)$. $\Box = \mathbb{Z}, \bullet = \mathbb{Z}/2$.

Richard Wong

(ロ) (回) (E) (E)

University of Texas at Austin

$$E_2^{s,t} = H^s(\mathbb{Z}/2; \pi_t(KU)) \Rightarrow \pi_{t-s}(KU^{h\mathbb{Z}/2})$$



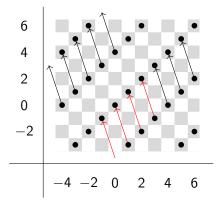
The Adams graded $\mathbb{Z}/2$ -HFPSS computing $\pi_*(KU^{h\mathbb{Z}/2}) \cong \pi_*(KO)$. $\Box = \mathbb{Z}, \bullet = \mathbb{Z}/2$.

Richard Wong

イロン イロン イヨン イヨン

University of Texas at Austin

$$E_2^{s,t} = \widehat{H}^s(\mathbb{Z}/2; \pi_t(KU)) \Rightarrow \pi_{t-s}(KU^{t\mathbb{Z}/2})$$



The Adams graded $\mathbb{Z}/2$ -Tate SS computing $\pi_*(\mathcal{K}U^{t\mathbb{Z}/2})$. $\bullet = \mathbb{Z}/2$.

Richard Wong

Let $R \to S$ be a *G*-Galois extension of E_{∞} -rings.

Corollary

We have the homotopy fixed point spectral sequence, which takes in input the spectrum pic(S) and has E_2 page:

$$H^{s}(G; \pi_{t}(pic(S))) \Rightarrow \pi_{t-s}(pic(S)^{hG})$$

whose abutment for t = s is Pic(R).

Theorem (Mathew-Stojanoska)

If t - s > 0 and s > 0 we have an equality of HFPSS differentials

$$d_r^{s,t}(\mathfrak{pic}S)\cong d_r^{s,t-1}(S)$$

Furthermore, this equality also holds whenever $2 \le r \le t - 1$.

Richard Wong

Picard Groups of Stable Module Categories

University of Texas at Austin

イロト イポト イヨト イヨト

University of Texas at Austin

Example

We will calculate Pic(KO) using the fact that $KO \rightarrow KU$ is a faithful $\mathbb{Z}/2$ -Galois extension of ring spectra.

Recall that $\pi_*(KU) \cong \mathbb{Z}[u^{\pm 1}]$, with |u| = 2. Since KU is even periodic with a regular noetherian π_0 ,

$$\operatorname{Pic}(KU) \cong \operatorname{Pic}(\pi_*(KU)) \cong \mathbb{Z}/2$$

The homotopy groups of pic(KU) are given by:

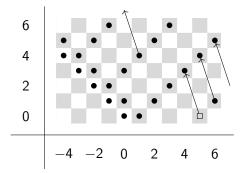
$$\pi_*(\mathfrak{pic}(R)) \cong \begin{cases} \operatorname{Pic}(KU) \cong \mathbb{Z}/2 & * = 0\\ (\pi_0(KU))^{\times} \cong \mathbb{Z}/2 & * = 1\\ \pi_{*-1}(KU) & * \ge 2 \end{cases}$$

Richard Wong

(ロ) (回) (E) (E)

University of Texas at Austin

$$E_2^{s,t} = H^s(\mathbb{Z}/2; \pi_t(\mathfrak{pic}(\mathsf{KU}))) \Rightarrow \pi_{t-s}((\mathfrak{pic}(\mathsf{KU}))^{h\mathbb{Z}/2})$$



The Adams graded $\mathbb{Z}/2$ -HFPSS computing $\pi_*((\mathfrak{pic}(KU))^{h\mathbb{Z}/2})$. $\Box = \mathbb{Z}$, • = $\mathbb{Z}/2$. Not all differentials are drawn.

Richard Wong

University of Texas at Austin

Example

Let G be a finite p-group and H a normal subgroup. Then

$$k^{hG} \rightarrow k^{hH}$$
 and $k^{tG} \rightarrow k^{tH}$

are G/H-Galois extensions of ring spectra. Note however that these Galois extension are not necessarily faithful.

Remark (Work in progress)

For Q a quaternion group, and $\mathbb{Z}/2 = Z(Q)$,

$$k^{tQ} o k^{t\mathbb{Z}/2}$$

is almost faithful.

Richard Wong

Remark

This comes from taking cochains $F((-)_+, k)$ of the fiber sequence

 $G/H \rightarrow BH \rightarrow BG$

However, to see that $S \otimes_R S \simeq F((G/H)_+, S)$, one needs the convergence of the mod p Eilenberg-Moore spectral sequence.

Richard Wong

University of Texas at Austin

イロト イポト イヨト イヨト

University of Texas at Austin

Theorem (Mathew)

Let E be an elementary abelian p-group of rank n. Then we have a short exact sequence $\mathbb{Z}^n \to \mathbb{Z}^n \to E$. This yields a fiber sequence

$$B\mathbb{Z}^n \to BE \to B^2\mathbb{Z}^n$$

Taking cochains, we have faithful \mathbb{T}^n -Galois extensions

$$k^{h\mathbb{T}^n}
ightarrow k^{hE}$$
 and $k^{t\mathbb{T}^n}
ightarrow k^{tE}$

Remark

In this case, we understand $\pi_*(k^{h\mathbb{T}^n}) \cong k[x_1, \cdots, x_n]$ well. So we need to do **reverse** Galois descent.

That is, for $R \to S$ is a faithful \mathbb{T}^n -Galois extension, when does $M \in \text{Pic}(S)$ descend from $M \in \text{Pic}(R)$?

Richard Wong

University of Texas at Austin

Theorem (Mathew)

Let E be an elementary abelian p-group of rank n. Then we have a short exact sequence $\mathbb{Z}^n \to \mathbb{Z}^n \to E$. This yields a fiber sequence

$$\mathbb{T}^n \to BE \to B\mathbb{T}^n$$

Taking cochains, we have faithful \mathbb{T}^n -Galois extensions

$$k^{h\mathbb{T}^n}
ightarrow k^{hE}$$
 and $k^{t\mathbb{T}^n}
ightarrow k^{tE}$

Remark

In this case, we understand $\pi_*(k^{h\mathbb{T}^n}) \cong k[x_1, \cdots, x_n]$ well. So we need to do **reverse** Galois descent.

That is, for $R \to S$ is a faithful \mathbb{T}^n -Galois extension, when does $M \in \text{Pic}(S)$ descend from $M \in \text{Pic}(R)$?

Richard Wong

University of Texas at Austin

Theorem (Dade, Mathew)

Let E denote an abelian p-group. Then Pic(StMod(kE)) is cyclic.

Proof.

- Show $\operatorname{Pic}(k^{t\mathbb{T}^n}) \cong C$ is cyclic.
- Show that for R → S a faithful Tⁿ-Galois extension, M ∈ Pic(S) descends from M ∈ Pic(R) iff for every a ∈ π₁(Tⁿ), the induced monodromy automorphism a : M → M is the identity.
- Show that for $k^{t\mathbb{T}^n} \to k^{tE}$, the monodromy is always trivial.
- Hence we have a surjection $C \rightarrow Pic(StMod(kE))$.

Richard Wong