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Let k be a field of positive characteristic p, and let G be a finite
group such that p | |G |.
We are interested in studying Mod(kG), the category of modules
over the group ring kG . This is the setting of modular
representation theory.
In this setting, Maschke’s theorem does not apply:

Theorem (Maschke)
The group algebra kG is semisimple iff the characteristic of k does
not divide the order of G.

In particular, one corollary is that not every module in Mod(kG) is
projective.
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Definition
The stable module category StMod(kG) has objects
kG-modules, and has morphisms

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N)

where PHomkG(M,N) is the linear subspace of maps that factor
through a projective module.

Definition
We say two maps f , g : M → N are stably equivalent if f − g
factors through a projective module.
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Proposition
StMod(kG) is the homotopy category of a stable model category
structure on Mod(kG).
The weak equivalences are the stable equivalences.
The fibrations are surjections. The acyclic fibrations are surjections
with projective kernel.
The suspension of a module M is denoted Ω−1(M), and is
constructed as the cofiber of an inclusion into an injective module:

M ↪→ I → Ω−1(M)

Proposition
StMod(kG) is a stable symmetric monoidal ∞-category.
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From now on, we restrict our attention to the case that G is a
finite p-group, so that the following theorem holds:

Theorem (Mathew)
There is an equivalence of symmetric monoidal ∞-categories

StMod(kG) ' Mod(ktG)

Remark
The proof goes through the identifications

Ind(Fun(BG ,Perf(k))) ∼= Mod(khG)

and for A = F (G+, k),

StMod(kG) ∼= LA−1 Ind(Fun(BG ,Perf(k)))
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The spectrum khG ' F (BG+, k) is the E∞ ring of cochains on BG
with coefficients in k. It is also the G-homotopy fixed points of k
with the trivial action.
Proposition
There is an isomorphism of graded rings

π∗(khG) ∼= H−∗(G ; k)

Example
For p = 2, π∗(kh(Z/2)n ) ∼= k[x1, . . . , xn] with |xi | = 1.
For p odd, π∗(kh(Z/p)n ) ∼= k[x1, . . . , xn]⊗ Λ(y1, . . . , yn) with
|xi | = 2, |yi | = 1.
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Theorem
We have the homotopy fixed point spectral sequence, which takes
in input the spectrum R with a G-action, and computes π∗(RhG):

E s,t
2 (R) = Hs(G ;πt(R))⇒ πt−s(RhG)

There is also a notion of homotopy orbits khG , and homotopy
orbit spectral sequence.

Proposition
There is an isomorphism

π∗(khG) ∼= H∗(G ; k)
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Just like there is a norm map in group cohomology

NG : H∗(G ; k)→ H∗(G ; k)

there is a norm map NG : khG → khG .
And just as one can stitch together group homology and
cohomology via the norm map to form Tate cohomology,

Ĥ i (G ; k) ∼=


H i (G ; k) i ≥ 1
coker(NG) i = 0
ker(NG) i = −1
H−i−1(G ; k) i ≤ −2

Definition
The Tate fixed points are the cofiber of the norm map:

khG
NG−−→ khG → ktG
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We have the Tate fixed point spectral sequence, which takes in
input the spectrum R with a G-action, and computes π∗(RtG):

E s,t
2 (R) = Ĥs(G ;πt(R))⇒ πt−s(RtG)

Remark
The multiplication of elements in negative degrees in π∗(ktG) is
the same as the multiplication in π∗(khG).
Multiplication by elements in positive degrees is more complicated.
For example, if G is an elementary abelian group of p-rank ≥ 2,

πn(ktG) · πm(ktG) = 0

for all n,m > 0.
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Theorem (Mathew)
For G a finite p-group, there is an equivalence of symmetric
monoidal ∞-categories

StMod(kG) ' Mod(ktG)

Remark
Historically, the study of StMod(kG) was very closely related to
the study of group and Tate cohomology.
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Ernie break
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Definition
The Picard group of a symmetric monoidal (∞-)category
(C,⊗, 1), denoted Pic(C), is the set of isomorphism classes of
invertible objects X , with

[X ] · [Y ] = [X ⊗ Y ]

[X ]−1 = [HomC(X , 1)]
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Example
The following are examples of stable symmetric monoidal
∞-categories:
(a) (Sp,∧, S,Σ)
(b) (D(R), ⊗̂R ,R[0],−[1]) for R a commutative ring.
(c) (Mod(R),∧R ,R,Σ) for R a commutative ring spectrum.
(d) (StMod(kG),⊗k , k,Ω−1) in modular characteristic.
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Theorem (Hopkins-Mahowald-Sadofsky)
Pic(Sp) ∼= Z

That is, for any X ∈ Pic(Sp), we have that X ∼= ΣiS for some
i ∈ Z.

Theorem (Dade)
Let E denote an abelian p-group. Then Pic(StMod(kE )) is cyclic.
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Given a symmetric monoidal ∞-category C, one can do better than
the Picard group:

Definition
The Picard space P ic(C) is the ∞-groupoid of invertible objects
in C and isomorphisms between them.

This is a group-like E∞-space, and so we equivalently obtain the
connective Picard spectrum pic(C).

Proposition
The functor pic : Cat⊗ → Sp≥0 commutes with limits and filtered
colimits.
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Example
Let R be an E∞-ring spectrum. The homotopy groups of pic(R)
are given by:

π∗(pic(R)) ∼=


Pic(R) ∗ = 0
(π0(R))× ∗ = 1
π∗−1(gl1(R)) ∼= π∗−1(R) ∗ ≥ 2

Note that the isomorphism π∗(gl1(R)) ∼= π∗(R) for ∗ ≥ 1 is usually
not compatible with the ring structure.
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Ernie break

Ernie’s 2019 Halloween Costume
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Theorem (Mathew-Stojanoska)
If f : R → S is a faithful G-Galois extension of E∞ ring spectra,
then we have an equivalence of ∞-categories

Mod(R) ∼= Mod(S)hG

Corollary
We have the homotopy fixed point spectral sequence, which takes
in input the spectrum pic(S) and has E2 page:

Hs(G ;πt(pic(S))⇒ πt−s(pic(S)hG)

whose abutment for t = s is Pic(R).
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Definition
A map f : R → S of E∞-ring spectra is a G-Galois extension if
the maps

(i) i : R → ShG

(ii) h : S ⊗R S → F (G+, S)
are weak equivalences.

Definition
A G-Galois extension of E∞-ring spectra f : R → S is said to be
faithful if the following property holds:
If M is an R-module such that S ⊗R M is contractible, then M is
contractible.
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Example
KO → KU is a faithful Z/2-Galois extension of ring spectra.
Note that π∗(KU) ∼= Z[u±1] with |u| = 2., which is very
homologically simple. On the other hand, π∗(KO) is more
complicated.

Proposition (Rognes)
A G-Galois extension of E∞-ring spectra f : R → S is faithful if
and only if the Tate construction StG is contractible.
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E s,t
2 = Hs(Z/2;πt(KU))⇒ πt−s(KUhZ/2)
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The Adams graded Z/2-HFPSS computing π∗(KUhZ/2) ∼= π∗(KO).
� = Z, • = Z/2.
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The Adams graded Z/2-HFPSS computing π∗(KUhZ/2) ∼= π∗(KO).
� = Z, • = Z/2.
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E s,t
2 = Ĥs(Z/2;πt(KU))⇒ πt−s(KUtZ/2)
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The Adams graded Z/2-Tate SS computing π∗(KU tZ/2). • = Z/2.
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Let R → S be a G-Galois extension of E∞-rings.

Corollary
We have the homotopy fixed point spectral sequence, which takes
in input the spectrum pic(S) and has E2 page:

Hs(G ;πt(pic(S)))⇒ πt−s(pic(S)hG)

whose abutment for t = s is Pic(R).

Theorem (Mathew-Stojanoska)
If t − s > 0 and s > 0 we have an equality of HFPSS differentials

d s,t
r (picS) ∼= d s,t−1

r (S)

Furthermore, this equality also holds whenever 2 ≤ r ≤ t − 1.
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Example
We will calculate Pic(KO) using the fact that KO → KU is a
faithful Z/2-Galois extension of ring spectra.
Recall that π∗(KU) ∼= Z[u±1], with |u| = 2. Since KU is even
periodic with a regular noetherian π0,

Pic(KU) ∼= Pic(π∗(KU)) ∼= Z/2

The homotopy groups of pic(KU) are given by:

π∗(pic(R)) ∼=


Pic(KU) ∼= Z/2 ∗ = 0
(π0(KU))× ∼= Z/2 ∗ = 1
π∗−1(KU) ∗ ≥ 2
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E s,t
2 = Hs(Z/2;πt(pic(KU)))⇒ πt−s((pic(KU))hZ/2)
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The Adams graded Z/2-HFPSS computing π∗((pic(KU))hZ/2). � = Z,
• = Z/2. Not all differentials are drawn.
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Example
Let G be a finite p-group and H a normal subgroup. Then

khG → khH and ktG → ktH

are G/H-Galois extensions of ring spectra. Note however that
these Galois extension are not necessarily faithful.

Remark (Work in progress)
For Q a quaternion group, and Z/2 = Z (Q),

ktQ → ktZ/2

is almost faithful.
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Remark
This comes from taking cochains F ((−)+, k) of the fiber sequence

G/H → BH → BG

However, to see that S ⊗R S ' F ((G/H)+, S), one needs the
convergence of the mod p Eilenberg-Moore spectral sequence.
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Theorem (Mathew)
Let E be an elementary abelian p-group of rank n. Then we have a
short exact sequence Zn → Zn → E. This yields a fiber sequence

BZn → BE → B2Zn

Taking cochains, we have faithful Tn-Galois extensions

khTn → khE and ktTn → ktE

Remark
In this case, we understand π∗(khTn ) ∼= k[x1, · · · , xn] well. So we
need to do reverse Galois descent.
That is, for R → S is a faithful Tn-Galois extension, when does
M ∈ Pic(S) descend from M ∈ Pic(R)?
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Theorem (Mathew)
Let E be an elementary abelian p-group of rank n. Then we have a
short exact sequence Zn → Zn → E. This yields a fiber sequence

Tn → BE → BTn

Taking cochains, we have faithful Tn-Galois extensions

khTn → khE and ktTn → ktE

Remark
In this case, we understand π∗(khTn ) ∼= k[x1, · · · , xn] well. So we
need to do reverse Galois descent.
That is, for R → S is a faithful Tn-Galois extension, when does
M ∈ Pic(S) descend from M ∈ Pic(R)?
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Theorem (Dade, Mathew)
Let E denote an abelian p-group. Then Pic(StMod(kE )) is cyclic.

Proof.
I Show Pic(ktTn ) ∼= C is cyclic.
I Show that for R → S a faithful Tn-Galois extension,

M ∈ Pic(S) descends from M ∈ Pic(R) iff for every
a ∈ π1(Tn), the induced monodromy automorphism
a : M → M is the identity.

I Show that for ktTn → ktE , the monodromy is always trivial.
I Hence we have a surjection C → Pic(StMod(kE )).
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