Generalizations

Picard Group Examples

< ロ > < 同 > < 回 > < 回 >

University of Texas at Austin

Algebraic Methods for Computing Picard Groups

Richard Wong

YTM 2019

Slides can be found at http://www.ma.utexas.edu/users/richard.wong/

Richard Wong

Classical Cases	
000 00	
<i>R</i> -modules	

Let R be a commutative ring.

Instead of trying to study R by itself, one might instead study Mod(R), the category of modules over R.

In Mod(*R*), we have an operation called tensor product, denoted \otimes_R or \otimes , which satisfies the following properties:

- 1. It has a unit, given by $R: M \otimes_R R \cong M \cong R \otimes_R M$.
- 2. It is associative: $(M \otimes N) \otimes P \cong M \otimes (N \otimes P)$.
- 3. It is symmetric: $M \otimes N \cong N \otimes M$.

Given an R-module N, we have a functor

 $-\otimes_R N: \operatorname{\mathsf{Mod}}(R) o \operatorname{\mathsf{Mod}}(R)$

イロト イポト イヨト イヨト

University of Texas at Austin

Classical Cases	
0000	
<i>R</i> -modules	

Question: When is $- \otimes N : Mod(R) \to Mod(R)$ an equivalence of categories?

Theorem

The following are equivalent:

(i) $- \otimes N : Mod(R) \rightarrow Mod(R)$ is an equivalence of categories.

(ii) There exists an R-module M such that $M \otimes N \cong R$. We say that N is invertible.

・ロト ・ 同ト ・ ヨト ・ ヨト

University of Texas at Austin

(iii) N is finitely generated projective of rank 1.

In fact, in case (ii) we have that $M \cong \text{Hom}_R(N, R)$.

Richard Wong

Observation: The set of isomorphism classes of invertible *R*-modules has a group structure:

Definition

The Picard group of R, denoted Pic(R), is the set of isomorphism classes of invertible modules, with

 $[M] \cdot [N] = [M \otimes N]$

 $[M]^{-1} = [\operatorname{Hom}_R(M, R)]$

イロト イポト イヨト イヨト

University of Texas at Austin

Richard Wong

Example

For R a local ring or PID, Pic(R) is trivial.

Proof.

For local rings/PIDs, a module is projective iff it is free. Hence $M \in Pic(R)$ iff M is a free rank 1 R-module.

Richard Wong

University of Texas at Austin

(ロ) (四) (E) (E)

University of Texas at Austin

Chain Complexes of *R*-modules

Let's see what happens if we work with chain complexes of R-modules, Ch(R), instead.

Definition

The tensor product of two chain complexes X_{\bullet} and Y_{\bullet} is defined at degree *n* by

$$(X \otimes Y)_n = \oplus_{i+j=n} X_i \otimes Y_j$$

This tensor product is also associative and symmetric, and has unit given by R[0].

Richard Wong

イロト イポト イヨト イヨト

University of Texas at Austin

Question: When is Y_{\bullet} invertible?

Theorem

The following are equivalent for a local ring R:

- (i) Y_• is invertible. That is, there exists a chain complex X_• such that X_• ⊗ Y_• ≅ R[0].
- (ii) Y_• is the chain complex R[n], that is, the complex R concentrated in a single degree n.

Example

For R a local ring, Pic(Ch(R)) is isomorphic to \mathbb{Z} .

Richard Wong

Picard Group Examples

University of Texas at Austin

To define Pic(R) and Pic(Ch(R)) we only really needed the associative, symmetric, and unital structure of \otimes .

Definition

Suppose we have a category \mathcal{C} that has bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ with unit 1 and is associative and symmetric. Then we say that $(\mathcal{C}, \otimes, 1)$ is a symmetric monoidal category.

Example

The following categories are symmetric monoidal:

(a)
$$(Set, \times, \{*\})$$

(b) $(Group, \times, \{e\})$
(c) $(Mod(R), \otimes, R)$

Richard Wong

The Picard group of a symmetric monoidal category $(\mathcal{C}, \otimes, 1)$, denoted Pic (\mathcal{C}) , is the set of isomorphism classes of invertible objects X, with

 $[X] \cdot [Y] = [X \otimes Y]$ $[M]^{-1} = [\operatorname{Hom}_{\mathcal{C}}(X, 1)]$

イロト イポト イヨト イヨト

University of Texas at Austin

Example

We have that Pic(R) = Pic(Mod(R)).

Richard Wong

However, we had more interesting structure in Pic(Ch(R)) since we could shift the unit R[0] up or down.

"Definition"

A symmetric monoidal category $(\mathcal{C}, \otimes, 1)$ is called **stable** if it also has a suspension functor $\Sigma : \mathcal{C} \to \mathcal{C}$ that is an equivalence of categories. In addition, Σ should play nicely with the tensor product. That is, $\Sigma(A \otimes B) \cong \Sigma A \otimes B$.

Warning: This definition is only right when using ∞ -categories. Alternatively, we can make a similar definiton using triangulated categories.

(日) (同) (三) (三)

University of Texas at Austin

	Generalizations	
00	00	0000000
Stable Symmetric Monoidal Categories		

Example

The following categories are stable symmetric monoidal:

- (a) $(D(R), \hat{\otimes}_R, R[0], -[1])$ for R a commutative ring.
- (b) $(Sp, \land, \mathbb{S}, \Sigma)$
- (c) $(Mod(R), \wedge_R, R, \Sigma)$ for R a commutative ring spectrum.
- (d) $(L_E(Sp), L_E(- \wedge -), L_E \mathbb{S}, \Sigma)$ for a spectrum *E*. In particular, E = E(n) or K(n).

・ロト ・ 同ト ・ ヨト ・ ヨト

University of Texas at Austin

(e) $(StMod(kG), \otimes_k, k, \Omega^{-1})$ for G a *p*-group and k a field of characteristic *p*.

	Picard Group Examples
	•• •••
Spectra	

Proposition

Suppose that $(C, \otimes, 1, \Sigma)$ is a stable symmetric monoidal category. Then one has a natural map

 $\mathbb{Z} \hookrightarrow \mathsf{Pic}(\mathcal{C})$ $n \mapsto \Sigma^n 1$

Richard Wong

University of Texas at Austin

(ロ) (部) (E) (E)

Theorem (Hopkins-Mahowald-Sadofsky)

 $\mathsf{Pic}(\mathsf{Sp}) \cong \mathbb{Z}$

Proof.

Since $X \in Pic(Sp)$, it is dualizable and therefore finite. We can then assume X is connected.

Then look at the homology of X with field coefficients for all fields and use the Künneth Theorem.

We can then deduce $H_*(X) \cong H_0(X) \cong \mathbb{Z}$ and hence $X \simeq S$ by the stable Hurewicz and Whitehead theorem.

(ロ) (四) (E) (E)

University of Texas at Austin

Richard Wong

		Picard Group Examples
		00
00	00	000000
<i>R</i> -Module Spectra		

A (commutative) ring spectrum R is a (commutative) ring object in the category of spectra. That is, it has a multiplication that is unital and associative (and commutative).

Example

The following are examples of commutative ring spectra:

- (a) S
- (b) Given a discrete ring R, we can form the Eilenberg-Maclane spectrum HR. Note that $\pi_*(HR) = R$, viewed as a graded ring concentrated in degree 0.

University of Texas at Austin

(c) *KU*, *KO*, *MU*, *E*(*n*).

00

University of Texas at Austin

Proposition (Baker-Richter)

We have a monomorphism

$$\Phi: \operatorname{Pic}(\pi_*(R)) \hookrightarrow \operatorname{Pic}(R)$$

Proof.

Given M_* , we build M as a homotopy colimit of free R modules, and use the Künneth Spectral Sequence to check M is a Picard group element.

$$E_{p,q}^2 = \operatorname{Tor}_{p,q}^{R_*}(M_*, N_*) \Rightarrow \pi_{p+q}(M \wedge_R N)$$

Richard Wong

	Picard Group Examples
	000000
R-Module Spectra	

When Φ : $Pic(\pi_*(R)) \rightarrow Pic(R)$ is an isomorphism, then we say that Pic(R) is **algebraic**.

Theorem (Baker-Richter)

For a connective commutative ring spectrum R, Pic(R) is algebraic.

Theorem (Baker-Richter)

For a weakly even periodic E_{∞} ring spectrum with $\pi_0(R)$ regular Noetherian, $\operatorname{Pic}(R)$ is algebraic.

University of Texas at Austin

Richard Wong

		Picard Group Examples
00	00	000000
R-Module Spectra		

"Theorem" (Hopkins)

For the spectra K(n) and E(n) at some fixed prime p, the Picard groups $Pic(L_{E(n)}(Sp))$ and $Pic(L_{K(n)}(Sp))$ are extremely interesting.

(ロ) (四) (三) (三)

University of Texas at Austin

Theorem (Hovey-Sadofsky, Kamiya-Shimomura)

 $X \in \text{Pic}(L_{E(n)}(\text{Sp}) \text{ if and only if there is an isomorphism } E(n)_*(X) \cong E(n)_* \text{ as } E(n)_*E(n) \text{ comodules.}$

Example

For n = 1, p = 2, $Pic(L_{E(n)}(Sp)) \cong \mathbb{Z} \oplus \mathbb{Z}/2$.

Richard Wong

		Picard Group Examples
00	00	0000000
R-Module Spectra		

The E(n)-based Adams spectral sequence, which takes in input a spectrum X and has E_2 page:

 $E_2^{s,t}(X) = \operatorname{Ext}_{E(n)*E(n)}^{s}(E(n)_*, E(n)_t(X)) \Rightarrow \pi_{s+t}(L_nX)$ and differential (for $r \ge 2$)

$$d_r: E_2^{s,t} \to E_r^{s+r,t+r-1}$$

<ロ> (四) (四) (日) (日) (日)

University of Texas at Austin

Richard Wong

	Picard Group Examples
	00 00000 0 0
<i>R</i> -Module Spectra	

Theorem (Mathew-Stojanoska)

If $f : R \to S$ is a faithful G-Galois extension of ring spectra, then we have an equivalence of ∞ -categories

 $\operatorname{\mathsf{Mod}}(R) o \operatorname{\mathsf{Mod}}(S)^{hG}$

Corollary

The homotopy fixed point spectral sequence, which takes in input the spectrum pic(S) and has E_2 page:

$$H^{s}(G; \pi_{t}(pic(S)) \Rightarrow \pi_{t-s}(pic(S)^{hG}))$$

University of Texas at Austin

whose abutment for t = s is Pic(R).

Richard Wong

00	
<i>R</i> -Module Spectra	

Generalizations 00 00

Thanks for listening!

Richard Wong

University of Texas at Austin

2

イロン イロン イヨン イヨン